A104033 Triangle, read by rows, equal to the matrix inverse of triangle A103327, where A103327(n,k) = binomial(2*n+1,2*k+1).
1, -3, 1, 25, -10, 1, -427, 175, -21, 1, 12465, -5124, 630, -36, 1, -555731, 228525, -28182, 1650, -55, 1, 35135945, -14449006, 1782495, -104676, 3575, -78, 1, -2990414715, 1229758075, -151714563, 8912475, -305305, 6825, -105, 1, 329655706465, -135565467080, 16724709820, -982532408
Offset: 0
Examples
Rows begin: 1; -3, 1; 25, -10, 1; -427, 175, -21, 1; 12465, -5124, 630, -36, 1; -555731 ,228525, -28182, 1650, -55, 1; 35135945, -14449006, 1782495, -104676, 3575, -78, 1; -2990414715, 1229758075, -151714563, 8912475, -305305, 6825, -105, 1; 329655706465, -135565467080, 16724709820, -982532408, 33669350, -754936, 11900, -136, 1; ... From _Peter Bala_, Aug 06 2013: (Start) The real zeros of the row polynomials R(n,x) seem to converge to the even squares as n increases. Polynomial | Real zeros to 6 decimal places = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = R(5,x) | 3.999986 R(10,x) | 4.000000, 15.999978 R(15,x) | 4.000000, 16.000000, 35.999992, 64.414273, 76.998346 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = (End)
Links
- W. Wang and T. Wang, Generalized Riordan array, Discrete Mathematics, Vol. 308, No. 24, 6466-6500.
Crossrefs
Programs
-
PARI
{T(n,k) = if(n
=j, binomial(2*m-1,2*j-1))))^-1)[n+1,k+1])} for(n=0,10,for(k=0,n, print1(T(n,k),", "));print("")) -
PARI
{T(n,k) = binomial(2*n+1,2*k+1) * polcoeff(1/cosh(x+x*O(x^(2*n))), 2*n-2*k) * (2*n-2*k)!} for(n=0,10,for(k=0,n, print1(T(n,k),", "));print(""))
Formula
Column k: Sum_{j=0..n} C(2*n+1, 2*j+1) * T(j, k) = 0 (n>k), or 1 (n=k).
Row n: Sum_{j=0..n} T(n, j) * C(2*j+1, 2*k+1) = 0 (k
Sum_{k=0..n} T(n, k) * 4^k = 1 for n >= 0.
Sum_{k=0..n} (-1)^(n-k)*T(n, k) = A002084(n). - Philippe Deléham, Aug 27 2005
From Peter Bala, Aug 06 2013: (Start)
Generating function: 1/sqrt(x)*sinh(sqrt(x)*t)/cosh(t) = t + (-3 + x)*t^3/3! + (25 - 10*x + x^2)*t^5/5! + ....
Recurrence equation for the row polynomials: R(n,x) = x^n - Sum_{k = 0..n-1} binomial(2*n+1,2*k+1)*R(k,x) with initial value R(0,x) = 1.
It appears that for arbitrary nonzero complex x we have
lim_{n -> inf} R(n,x^2)/R(n,0) = (1/(Pi/2*x))*sin(Pi/2*x).
A stronger result than pointwise convergence may hold: the convergence may be uniform on compact subsets of the complex plane. This would explain the observation that the real zeros of the polynomials R(n,x) seem to converge to the even squares 4, 16, 36, ... as n increases. Some numerical examples are given below. Cf. A055133, A086646 and A103364.
If p = 2*n + 1 is a prime then all the entries in row n are divisible by p, apart from T(n,n) = 1. Thus the row sum is congruent to 1 modulo p.
Row sums R(n,1) = (-1)^n*A000182(n+1).
R(n,4) = 1; R(n,16) = (1/2)*( 3^(2*n+1) - 1 ) = A096053(n);
R(n,36) = (1/3)*( 5^(2*n+1) - 3^(2*n+1) + 1 );
R(n,64) = (1/4)*( 7^(2*n+1) - 5^(2*n+1) + 3^(2*n+1) - 1 ). (End)
Extensions
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 08 2007
A086645 Triangle read by rows: T(n, k) = binomial(2n, 2k).
1, 1, 1, 1, 6, 1, 1, 15, 15, 1, 1, 28, 70, 28, 1, 1, 45, 210, 210, 45, 1, 1, 66, 495, 924, 495, 66, 1, 1, 91, 1001, 3003, 3003, 1001, 91, 1, 1, 120, 1820, 8008, 12870, 8008, 1820, 120, 1, 1, 153, 3060, 18564, 43758, 43758, 18564, 3060, 153, 1, 1, 190, 4845, 38760
Offset: 0
Comments
Terms have the same parity as those of Pascal's triangle.
Coefficients of polynomials (1/2)*((1 + x^(1/2))^(2n) + (1 - x^(1/2))^(2n)).
Number of compositions of 2n having k parts greater than 1; example: T(3, 2) = 15 because we have 4+2, 2+4, 3+2+1, 3+1+2, 2+3+1, 2+1+3, 1+3+2, 1+2+3, 2+2+1+1, 2+1+2+1, 2+1+1+2, 1+2+2+1, 1+2+1+2, 1+1+2+2, 3+3. - Philippe Deléham, May 18 2005
Number of binary words of length 2n - 1 having k runs of consecutive 1's; example: T(3,2) = 15 because we have 00101, 01001, 01010, 01011, 01101, 10001, 10010, 10011, 10100, 10110, 10111, 11001, 11010, 11011, 11101. - Philippe Deléham, May 18 2005
Let M_n be the n X n matrix M_n(i, j) = T(i, j-1); then for n > 0, det(M_n) = A000364(n), Euler numbers; example: det([1, 1, 0, 0; 1, 6, 1, 0; 1, 15, 15, 1; 1, 28, 70, 28 ]) = 1385 = A000364(4). - Philippe Deléham, Sep 04 2005
Equals ConvOffsStoT transform of the hexagonal numbers, A000384: (1, 6, 15, 28, 45, ...); e.g., ConvOffs transform of (1, 6, 15, 28) = (1, 28, 70, 28, 1). - Gary W. Adamson, Apr 22 2008
From Peter Bala, Oct 23 2008: (Start)
Let C_n be the root lattice generated as a monoid by {+-2*e_i: 1 <= i <= n; +-e_i +- e_j: 1 <= i not equal to j <= n}. Let P(C_n) be the polytope formed by the convex hull of this generating set. Then the rows of this array are the h-vectors of a unimodular triangulation of P(C_n) [Ardila et al.]. See A127674 for (a signed version of) the corresponding array of f-vectors for these type C_n polytopes. See A008459 for the array of h-vectors for type A_n polytopes and A108558 for the array of h-vectors associated with type D_n polytopes.
(End)
Diagonal sums: A108479. - Philippe Deléham, Sep 08 2009
Coefficients of Product_{k=1..n} (cot(k*Pi/(2n+1))^2 - x) = Sum_{k=0..n} (-1)^k*binomial(2n,2k)*x^k/(2n+1-2k). - David Ingerman (daviddavifree(AT)gmail.com), Mar 30 2010
Generalized Narayana triangle for 4^n (or cosh(2x)). - Paul Barry, Sep 28 2010
Coefficients of the matrix inverse appear to be T^(-1)(n,k) = (-1)^(n+k)*A086646(n,k). - R. J. Mathar, Mar 12 2013
Let E(y) = Sum_{n>=0} y^n/(2*n)! = cosh(sqrt(y)). Then this triangle is the generalized Riordan array (E(y), y) with respect to the sequence (2*n)! as defined in Wang and Wang. Cf. A103327. - Peter Bala, Aug 06 2013
Row 6, (1,66,495,924,495,66,1), plays a role in expansions of powers of the Dedekind eta function. See the Chan link, p. 534, and A034839. - Tom Copeland, Dec 12 2016
Examples
From _Peter Bala_, Oct 23 2008: (Start) The triangle begins n\k|..0.....1.....2.....3.....4.....5.....6 =========================================== 0..|..1 1..|..1.....1 2..|..1.....6.....1 3..|..1....15....15.....1 4..|..1....28....70....28.....1 5..|..1....45...210...210....45.....1 6..|..1....66...495...924...495....66.....1 ... (End) From _Peter Bala_, Aug 06 2013: (Start) Viewed as the generalized Riordan array (cosh(sqrt(y)), y) with respect to the sequence (2*n)! the column generating functions begin 1st col: cosh(sqrt(y)) = 1 + y/2! + y^2/4! + y^3/6! + y^4/8! + .... 2nd col: 1/2!*y*cosh(sqrt(y)) = y/2! + 6*y^2/4! + 15*y^3/6! + 28*y^4/8! + .... 3rd col: 1/4!*y^2*cosh(sqrt(y)) = y^2/4! + 15*y^3/6! + 70*y^4/8! + 210*y^5/10! + .... (End)
References
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 224.
Links
- Indranil Ghosh, Rows 0.. 120 of triangle, flattened
- F. Ardila, M. Beck, S. Hosten, J. Pfeifle and K. Seashore, Root polytopes and growth series of root lattices arXiv:0809.5123 [math.CO], 2008.
- H. Chan, S. Cooper and P. Toh, The 26th power of Dedekind's eta function Advances in Mathematics, 207 (2006) 532-543.
- T. Copeland, Infinitesimal Generators, the Pascal Pyramid, and the Witt and Virasoro Algebras, 2012.
- T. Copeland, Skipping over Dimensions, Juggling Zeros in the Matrix, 2020.
- E. Lucas, Théorie des fonctions numériques simplement périodiques, Baltimore, 1878. See page 145 equation (153).
- W. Wang and T. Wang, Generalized Riordan array, Discrete Mathematics, Vol. 308, No. 24, 6466-6500.
Crossrefs
Programs
-
Magma
/* As triangle: */ [[Binomial(2*n, 2*k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Dec 14 2016
-
Maple
A086645:=(n,k)->binomial(2*n,2*k): seq(seq(A086645(n,k),k=0..n),n=0..12);
-
Mathematica
Table[Binomial[2 n, 2 k], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 13 2016 *)
-
Maxima
create_list(binomial(2*n,2*k),n,0,12,k,0,n); /* Emanuele Munarini, Mar 11 2011 */
-
PARI
{T(n, k) = binomial(2*n, 2*k)};
-
PARI
{T(n, k) = sum( i=0, min(k, n-k), 4^i * binomial(n, 2*i) * binomial(n - 2*i, k-i))}; /* Michael Somos, May 26 2005 */
Formula
Sum_{k>=0} T(n, k)*2^k = A001541(n). Sum_{k>=0} T(n, k)*3^k = 2^n*A001075(n). Sum_{k>=0} T(n, k)*4^k = A083884(n). - Philippe Deléham, Feb 29 2004
O.g.f.: (1 - z*(1+x))/(x^2*z^2 - 2*x*z*(1+z) + (1-z)^2) = 1 + (1 + x)*z +(1 + 6*x + x^2)*z^2 + ... . - Peter Bala, Oct 23 2008
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A081294(n), A001541(n), A090965(n), A083884(n), A099140(n), A099141(n), A099142(n), A165224(n), A026244(n) for x = 0,1,2,3,4,5,6,7,8,9 respectively. - Philippe Deléham, Sep 08 2009
Product_{k=1..n} (cot(k*Pi/(2n+1))^2 - x) = Sum_{k=0..n} (-1)^k*binomial(2n,2k)*x^k/(2n+1-2k). - David Ingerman (daviddavifree(AT)gmail.com), Mar 30 2010
From Paul Barry, Sep 28 2010: (Start)
G.f.: 1/(1-x-x*y-4*x^2*y/(1-x-x*y)) = (1-x*(1+y))/(1-2*x*(1+y)+x^2*(1-y)^2);
E.g.f.: exp((1+y)*x)*cosh(2*sqrt(y)*x);
T(n,k) = Sum_{j=0..n} C(n,j)*C(n-j,2*(k-j))*4^(k-j). (End)
T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) + 2*T(n-2,k-1) - T(n-2,k) - T(n-2,k-2), with T(0,0)=T(1,0)=T(1,1)=1, T(n,k)=0 if k<0 or if k>n. - Philippe Deléham, Nov 26 2013
From Peter Bala, Sep 22 2021: (Start)
n-th row polynomial R(n,x) = (1-x)^n*T(n,(1+x)/(1-x)), where T(n,x) is the n-th Chebyshev polynomial of the first kind. Cf. A008459.
R(n,x) = Sum_{k = 0..n} binomial(n,2*k)*(4*x)^k*(1 + x)^(n-2*k).
R(n,x) = n*Sum_{k = 0..n} (n+k-1)!/((n-k)!*(2*k)!)*(4*x)^k*(1-x)^(n-k) for n >= 1. (End)
A091042 Triangle of even numbered entries of odd numbered rows of Pascal's triangle A007318.
1, 1, 3, 1, 10, 5, 1, 21, 35, 7, 1, 36, 126, 84, 9, 1, 55, 330, 462, 165, 11, 1, 78, 715, 1716, 1287, 286, 13, 1, 105, 1365, 5005, 6435, 3003, 455, 15, 1, 136, 2380, 12376, 24310, 19448, 6188, 680, 17, 1, 171, 3876, 27132, 75582, 92378, 50388, 11628, 969, 19, 1, 210, 5985, 54264, 203490, 352716, 293930, 116280, 20349, 1330, 21
Offset: 0
Comments
The row polynomials Pe(n, x) := Sum_{m=0..n} a(n, m)*x^m appear as numerators of the generating functions for the even numbered column sequences of array A034870.
Elements have the same parity as those of Pascal's triangle.
All zeros of polynomial Pe(n, x) are negative. They are -tan^2(Pi/2*n+1), -tan^2(2*Pi/2*n+1), ..., -tan^2(n*Pi/2*n+1). Moreover, for m >= 1, Pe(m, -x^2) is the characteristic polynomial of the linear difference equation with constant coefficients for differences between multiples of 2*m+1 with even and odd digit sum in base 2*m in the interval [0,(2*m)^n). - Vladimir Shevelev and Peter J. C. Moses, May 22 2012
Row reverse of A103327. - Peter Bala, Jul 29 2013
The row polynomial Pe(d, x), multiplied by (2*d)!/d! = A001813(d), gives the numerator polynomial of the o.g.f. of the sequence of the diagonal d, for d >= 0, of the Sheffer triangle Lah[4,1] given in A048854. - Wolfdieter Lang, Oct 12 2017
Examples
Triangle a(n, m) begins: n\m 0 1 2 3 4 5 6 7 8 9 10 ... 0: 1 1: 1 3 2: 1 10 5 3: 1 21 35 7 4: 1 36 126 84 9 5: 1 55 330 462 165 11 6: 1 78 715 1716 1287 286 13 7: 1 105 1365 5005 6435 3003 455 15 8: 1 136 2380 12376 24310 19448 6188 680 17 9: 1 171 3876 27132 75582 92378 50388 11628 969 19 10: 1 210 5985 54264 203490 352716 293930 116280 20349 1330 21 ... reformatted and extended. - _Wolfdieter Lang_, Oct 12 2017 From _Peter Bala_, Jan 30 2022: (Start) (1/2)*(N^2 + N) = Sum_{j = 1..N} j. (1/2)*(N^2 + N)^3 = Sum_{j = 1..N} j^3 + 3*Sum_{j = 1..N} j^5. (1/2)*(N^2 + N)^5 = Sum_{j = 1..N} j^5 + 10*Sum_{j = 1..N} j^7 + 5*Sum_{j = 1..N} j^9. (1/2)*(N^2 + N)^7 = Sum_{j = 1..N} j^7 + 21*Sum_{j = 1..N} j^9 + 35*Sum_{j = 1..N} j^11 + 7*Sum_{j = 1..N} j^13. (End)
References
- A. M. Yaglom and I. M. Yaglom, An elementary proof of the Wallis, Leibniz and Euler formulas for pi. Uspekhi Matem. Nauk, VIII (1953), 181-187(in Russian).
Links
- Indranil Ghosh, Rows 0..120 of triangle, flattened
- Wolfdieter Lang, First 9 rows.
- V. Shevelev, On monotonic strengthening of Newman-like phenomenon on (2m+1)-multiples in base 2m, arXiv:0710.3177 [math.NT], 2007.
- V. Shevelev and P. Moses, Tangent power sums and their applications, arXiv:1207.0404 [math.NT], 2012-2014.
Crossrefs
Programs
-
GAP
Flat(List([0..12], n-> List([0..n], k-> Binomial(2*n+1, 2*k) ))); # G. C. Greubel, Aug 01 2019
-
Magma
[[Binomial(2*n+1,2*k): k in [0..n]]: n in [0..12]]; // G. C. Greubel, Aug 01 2019
-
Maple
f := (x, t) -> cosh(sqrt(x)*t)*sinh(t); seq(seq(coeff(((2*n+1)!*coeff(series(f(x,t),t,2*n+2),t,2*n+1)),x,k),k=0..n),n=0..9); # Peter Luschny, Jul 29 2013
-
Mathematica
T[n_, k_] /; 0 <= k <= n := T[n, k] = 2T[n-1, k] + 2T[n-1, k-1] + 2T[n-2, k-1] - T[n-2, k] - T[n-2, k-2]; T[0, 0] = T[1, 0] = 1; T[1, 1] = 3; T[, ] = 0; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* Jean-François Alcover, Jul 29 2018, after Philippe Deléham *) Table[Binomial[2*n+1, 2*k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Aug 01 2019 *)
-
PARI
T(n,k) = binomial(2*n+1, 2*k); \\ G. C. Greubel, Aug 01 2019
-
Python
from math import comb, isqrt def A091042(n): return comb((r:=(m:=isqrt(k:=n+1<<1))-(k<=m*(m+1)))<<1|1,n-comb(r+1,2)<<1) # Chai Wah Wu, Apr 30 2025
-
Sage
[[binomial(2*n+1, 2*k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Aug 01 2019
Formula
T(n, m) = binomial(2*n+1, 2*m) = A007318(2*n+1, 2*m), n >= m >= 0, otherwise 0.
From Peter Bala, Jul 29 2013: (Start)
E.g.f.: sinh(t)*cosh(sqrt(x)*t) = t + (1 + 3*x)*t^3/3! + (1 + 10*x + 5*x^2)*t^5/5! + (1 + 21*x + 35*x^2 + 7*x^3)*t^7/7! + ....
O.g.f.: A(x,t) = (1 + (x - 1)*t)/( (1 + (x - 1)*t)^2 - 4*t*x ) = 1 + (1 + 3*x)*t + (1 + 10*x + 5*x^2)*t^2 + ...
The function A( x/(x + 4), t*(x + 4)/4 ) = 1 + (1 + x)*t + (1 + 3*x + x^2)*t^2 + ... is the o.g.f. for A085478.
O.g.f. for n-th diagonal: ( Sum_{k = 0..n} binomial(2*n,2*k)*x^k )/(1 - x)^(2*n).
n-th row polynomial R(n,x) = (1/2)*( (1 + sqrt(x))^(2*n+1) - (sqrt(x) - 1)^(2*n+1) ).
Row sums A000302. (End)
T(n, k) = 2*T(n-1,k) + 2*T(n-1,k-1) + 2*T(n-2,k-1) - T(n-2,k) - T(n-2,k-2) with T(0,0)=T(1,0)=1, T(1,1)=3, T(n,k)=0 if k < 0 or if k > n. - Philippe Deléham, Nov 26 2013
From Peter Bala, Jan 31 2022: (Start)
Define S(r,N) = Sum_{j = 1..N} j^r. Then the following identity holds for n >= 0: (1/2)*(N^2 + N)^(2*n+1) = T(n,0)*S(2*n+1,N) + T(n,1)*S(2*n+3,N) + ... + T(n,n)* S(4*n+1,N). Some examples are given below. (End)
A002084 Sinh(x) / cos(x) = Sum_{n>=0} a(n)*x^(2n+1)/(2n+1)!.
1, 4, 36, 624, 18256, 814144, 51475776, 4381112064, 482962852096, 66942218896384, 11394877025289216, 2336793875186479104, 568240131312188379136, 161669933656307658932224, 53204153193639888357113856, 20053432927718528320240287744
Offset: 0
Comments
Gandhi proves that a(n) == 1 (mod 2n+1) if 2n+1 is prime, that a(2n+1) == 4 (mod 10), and that a(2n+2) == 6 (mod 10). - Charles R Greathouse IV, Oct 16 2012
Examples
x + 2/3*x^3 + 3/10*x^5 + 13/105*x^7 + 163/3240*x^9 + ...
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..50
- J. M. Gandhi, The coefficients of sinh x/ cos x. Canad. Math. Bull. 13 1970 305-310.
- Peter Luschny, An old operation on sequences: the Seidel transform.
Crossrefs
Cf. A002085.
Programs
-
Mathematica
With[{nn=30},Take[CoefficientList[Series[Sinh[x]/Cos[x],{x,0,nn}],x] Range[0,nn-1]!,{2,-1,2}]] (* Harvey P. Dale, Jul 17 2012 *)
-
PARI
a(n)=n++;my(v=Vec(1/cos(x+O(x^(2*n+1)))));v=vector(n,i,v[2*i-1]*(2*i-2)!);sum(g=1,n,binomial(2*n-1,2*g-2)*v[g]) \\ Charles R Greathouse IV, Oct 16 2012
-
PARI
list(n)=n++;my(v=Vec(1/cos(x+O(x^(2*n+1)))));v=vector(n,i,v[2*i-1]*(2*i-2)!);vector(n,k,sum(g=1,k,binomial(2*k-1,2*g-2)*v[g])) \\ Charles R Greathouse IV, Oct 16 2012
-
Sage
# Generalized algorithm of L. Seidel (1877) def A002084_list(n) : R = []; A = {-1:0, 0:0} k = 0; e = 1 for i in range(2*n) : Am = 1 if e == -1 else 0 A[k + e] = 0 e = -e for j in (0..i) : Am += A[k] A[k] = Am k += e if e == 1 : R.append(A[i//2]) return R A002084_list(10) # Peter Luschny, Jun 02 2012
Formula
E.g.f.: sinh(x)/cos(x) = Sum_{n>=0} a(n)*x^(2n+1)/(2n+1)!.
a(n) = Sum_{k=0..n} binomial(2n+1, 2k+1)*A000364(n-k) = Sum_{k=0..n} A103327(n, k)*A000324(n-k) = Sum_{k=0..n} (-1)^(n-k)*A104033(n, k). - Philippe Deléham, Aug 27 2005
a(n) ~ sinh(Pi/2) * 2^(2*n + 3) * (2*n + 1)! / Pi^(2*n+2). - Vaclav Kotesovec, Jul 05 2020
Extensions
a(13)-a(15) from Andrew Howroyd, Feb 05 2018
A103328 Triangle T(n, k) read by rows: binomial(2n, 2k+1).
0, 2, 0, 4, 4, 0, 6, 20, 6, 0, 8, 56, 56, 8, 0, 10, 120, 252, 120, 10, 0, 12, 220, 792, 792, 220, 12, 0, 14, 364, 2002, 3432, 2002, 364, 14, 0, 16, 560, 4368, 11440, 11440, 4368, 560, 16, 0, 18, 816, 8568, 31824, 48620, 31824, 8568, 816, 18, 0, 20, 1140, 15504
Offset: 0
Comments
A subset of Pascal's triangle A007318 with only even elements.
Examples
Triangle begins 0; 2, 0; 4, 4, 0; 6, 20, 6, 0; 8, 56, 56, 8, 0; 10, 120, 252, 120, 10, 0; 12, 220, 792, 792, 220, 12, 0; 14, 364, 2002, 3432, 2002, 364, 14, 0; 16, 560, 4368, 11440, 11440, 4368, 560, 16, 0; ... From _Peter Bala_, Jan 30 2022: (Start) (1/2)*(N^2 + N)^2 = 2*Sum_{j = 1..N} j^3. (1/2)*(N^2 + N)^4 = 4*Sum_{j = 1..N} j^5 + 4*Sum_{j = 1..N} j^7. (1/2)*(N^2 + N)^6 = 6*Sum_{j = 1..N} j^7 + 20*Sum_{j = 1..N} j^9 + 6*Sum_{j = 1..N} j^11. (1/2)*(N^2 + N)^8 = 8*Sum_{j = 1..N} j^9 + 56*Sum_{j = 1..N} j^11 + 56*Sum_{j = 1..N} j^13 + 8*Sum_{j = 1..N} j^15. (End)
References
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 224.
Formula
From Peter Bala, Jan 31 2022: (Start)
T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k) + 2*T(n-2,k-1) - T(n-2,k-2), with T(0,0) = 0, T(1,0) = 2 and T(n,k) = 0 if k < 0 or if k > n-1.
n-th row polynomial R(n,x) = (1/(2*sqrt(x)))*( (1 + sqrt(x))^(2*n) - (1 - sqrt(x))^(2*n) ).
O.g.f.: A(x,t) = 2*t/(1 - 2*(x + 1)*t + (x - 1)^2*t^2) = 2*t + (4 + 4*x)*t^2 + (6 + 20*x + 6*x^2)*t^3 + ....
G.f.: (1/sqrt(x))*sinh(t)*sinh(sqrt(x)*t) = 2*t^2/2! + (4 + 4*x)*t^4/4! + (6 + 20*x^2 + 6*x^3)*t^6/6! + ....
O.g.f. for n-th diagonal: ( Sum_{k = 0..n} binomial(2*n,2*k+1)*x^k )/(1 - x)^(2*n) = 1/(2*sqrt(x))*((1 - sqrt(x))^(-2*n) - (1 + sqrt(x))^(-2*n)).
With a different offset, 2/(x-4)*A(x/(x-4), t*(x-4)/4) = t/(1 + t*(2 - x) + t^2) is a g.f. of A053122.
Define S(r,N) = Sum_{j = 1..N} j^r. Then the following identity holds for n >= 1:
(1/2)*(N^2 + N)^(2*n) = T(n,0)*S(2*n+1,N) + T(n,1)*S(2*n+3,N) + ... + T(n,n-1)*S(4*n-1,N). Some examples are given below. (End)
A109446 Binomial coefficients C(n,k) with n-k even, read by rows.
1, 1, 1, 1, 3, 1, 1, 6, 1, 5, 10, 1, 1, 15, 15, 1, 7, 35, 21, 1, 1, 28, 70, 28, 1, 9, 84, 126, 36, 1, 1, 45, 210, 210, 45, 1, 11, 165, 462, 330, 55, 1, 1, 66, 495, 924, 495, 66, 1, 13, 286, 1287, 1716, 715, 78, 1, 1, 91, 1001, 3003, 3003, 1001, 91, 1, 15, 455, 3003, 6435, 5005
Offset: 0
Comments
Binomial(n,2(n-k-1)) is also the number of permutations avoiding both 123 and 132 with k descents, i.e., positions with w[i]>w[i+1]. - Lara Pudwell, Dec 19 2018
Examples
Starred terms in Pascal's triangle (A007318), read by rows: 1*; 1, 1*; 1*, 2, 1*; 1, 3*, 3, 1*; 1*, 4, 6*, 4, 1*; 1, 5*, 10, 10*, 5, 1*; 1*, 6, 15*, 20, 15*, 6, 1*; 1, 7*, 21, 35*, 35, 21*, 7, 1*; 1*, 8, 28*, 56, 70*, 56, 28*, 8, 1*; 1, 9*, 36, 84*, 126, 126*, 84, 36*, 9, 1*; Rows in A086645 (1; 1, 1; 1, 6, 1; ...) interspersed with rows in A103327 (1; 3, 1; 5, 10, 1; ...). 1; 1; 1, 1; 3, 1; 1, 6, 1; 5, 10, 1; 1, 15, 15, 1; 7, 35, 21, 1; ....
Links
- Alois P. Heinz, Rows n = 0..200, flattened
- M. Bukata, R. Kulwicki, N. Lewandowski, L. Pudwell, J. Roth, and T. Wheeland, Distributions of Statistics over Pattern-Avoiding Permutations, arXiv preprint arXiv:1812.07112 [math.CO], 2018.
Programs
-
Maple
T:= (n, k)-> binomial(n, 2*k+irem(n, 2)): seq(seq(T(n, k), k=0..floor(n/2)), n=0..20); # Alois P. Heinz, Feb 07 2014
-
Mathematica
Flatten[ Table[ If[ EvenQ[n - k], Binomial[n, k], {}], {n, 0, 15}, {k, 0, n}]] (* Robert G. Wilson v *)
Extensions
More terms from Robert G. Wilson v, Aug 30 2005
A292219 Triangle read by rows. A generalization of unsigned Lah numbers, called L[4,3].
1, 6, 1, 60, 20, 1, 840, 420, 42, 1, 15120, 10080, 1512, 72, 1, 332640, 277200, 55440, 3960, 110, 1, 8648640, 8648640, 2162160, 205920, 8580, 156, 1, 259459200, 302702400, 90810720, 10810800, 600600, 16380, 210, 1, 8821612800, 11762150400, 4116752640, 588107520, 40840800, 1485120, 28560, 272, 1
Offset: 0
Comments
For the general L[d,a] triangles see A286724, also for references.
This is the generalized signless Lah number triangle L[4,3], the Sheffer triangle ((1 - 4*t)^(-3/2), t/(1 - 4*t)). It is defined as transition matrix
risefac[4,3](x, n) = Sum_{m=0..n} L[4,3](n, m)*fallfac[4,3](x, m), where risefac[4,3](x, n) := Product_{0..n-1} (x + (3 + 4*j)) for n >= 1 and risefac[4,3](x, 0) := 1, and fallfac[4,3](x, n):= Product_{0..n-1} (x - (3 + 4*j)) for n >= 1 and fallfac[4,3](x, 0) := 1.
In matrix notation: L[4,3] = S1phat[4,3]*S2hat[4,3] with the unsigned scaled Stirling1 and the scaled Stirling2 generalizations A225471 and A225469, respectively.
The a- and z-sequences for this Sheffer matrix have e.g.f.s Ea(t) = 1 + 4*t and Ez(t) = (1 + 4*t)*(1 - (1 + 4*t)^(-3/2))/t, respectively. That is, a = {1, 4, repeat(0)} and z(n) = 2*A292221(n). See the W. Lang link on a- and z-sequences there.
The inverse matrix T^(-1) = L^(-1)[4,3] is Sheffer ((1 + 4*t)^(-3/2), t/(1 + 4*t)). This means that T^(-1)(n, m) = (-1)^(n-m)*T(n, m).
fallfac[4,3](x, n) = Sum_{m=0..n} (-1)^(n-m)*T(n, m)*risefac[4,3](x, m), n >= 0.
Diagonal sequences have o.g.f. G(d, x) = A001813(d)*Sum_{m=0..d} A103327(d, m)*x^m/(1 - x)^(2*d + 1), for d >= 0 (d=0 main diagonal). G(d, x) generates {A001813(d)*binomial(2*(m + d) + 1, 2*d)}{m >= 0}. See the second W. Lang link on how to compute o.g.f.s of diagonal sequences of general Sheffer triangles. - _Wolfdieter Lang, Oct 12 2017
Examples
The triangle T(n, m) begins: n\m 0 1 2 3 4 5 6 7 8 0: 1 1: 6 1 2: 60 20 1 3: 840 420 42 1 4: 15120 10080 1512 72 1 5: 332640 277200 55440 3960 110 1 6: 8648640 8648640 2162160 205920 8580 156 1 7: 259459200 302702400 90810720 10810800 600600 16380 210 1 8: 8821612800 11762150400 4116752640 588107520 40840800 1485120 28560 272 1 ... Recurrence from a-sequence: T(4, 2) = (4/2)*T(3, 1) + 4*4*T(3, 2) = 2*420 + 16*42 = 1512. Recurrence from z-sequence: T(4, 0) = 4*(z(0)*T(3, 0) + z(1)*T(3, 1) + z(2)*T(3, 2)+ z(3)*T(3, 3)) = 4*(6*840 - 6*420 + 40*42 -420*1) = 15120. Meixner type identity for n = 2: (D_x - 4*(D_x)^2)*(60 + 20*x + 1*x^2 ) = (20 + 2*x) - 4*2 = 2*(6 + x). Sheffer recurrence for R(3, x): [(6 + x) + 8*(3 + x)*D_x + 16*x*(D_x)^2] (60 + 20*x + 1*x^2) = (6 + x)*(60 + 20*x + x^2) + 8*(3 + x)*(20 + 2*x) + 16*2*x = 840 + 420*x + 42*x^2 + x^3 = R(3, x). Boas-Buck recurrence for column m = 2 with n = 4: T(4, 2) = (2*4!/2)*(3 + 2*2)*(1*42/3! + 4*1/2!) = 1512. Diagonal sequence d = 2: {60, 420, 1512, ...} has o.g.f. 12*(5 + 10*x + x^2)/(1 - x)^5 (see A001813(2) and row n=2 of A103327) generating {12*binomial(2*(m + 2) + 1, 4)}_{m >= 0}. - _Wolfdieter Lang_, Oct 12 2017
References
- Steven Roman, The Umbral Calculus, Academic press, Orlando, London, 1984, p. 50.
Links
- Wolfdieter Lang, Table of n, a(n) for n = 0..1325
- Wolfdieter Lang, On Sums of Powers of Arithmetic Progressions, and Generalized Stirling, Eulerian and Bernoulli Numbers, arXiv:math/1707.04451 [math.NT], July 2017, section C) 4.
- Wolfdieter Lang, On Generating functions of Diagonal Sequences of Sheffer and Riordan Number Triangles, arXiv:1708.01421 [math.NT], August 2017.
Crossrefs
Formula
E.g.f. of row polynomials R(n, x) := Sum_{m=0..n} T(n, m)*x^m:
(1 - 4*t)^(-3/2)*exp(x*t/(1 - 4*t)) (this is the e.g.f. for the triangle).
E.g.f. of column m: (1 - 4*t)^(-3/2)*(t/(1 - 4*t))^m/m!, m >= 0.
Three term recurrence for column entries k >= 1: T(n, m) = (n/m)*T(n-1, m-1) + 4*n*T(n-1, m) with T(n, m) = 0 for n < m, and for the column m = 0: T(n, 0) = n*Sum_{j=0}^(n-1) z(j)*T(n-1, j), n >= 1, T(0, 0) = 0, from the a-sequence {1, 4 repeat(0)} and z(j) = 2*A292221(j) (see above).
Four term recurrence: T(n, m) = T(n-1, m-1) + 2*(4*n - 1)*T(n-1, m) - 8*(n-1)*(2*n - 1)*T(n-2, m), n >= m >= 0, with T(0, 0) =1, T(-1, m) = 0, T(n, -1) = 0 and T(n, m) = 0 if n < m.
Meixner type identity for (monic) row polynomials: (D_x/(1 + 4*D_x)) * R(n, x) = n * R(n-1, x), n >= 1, with R(0, x) = 1 and D_x = d/dx. That is, Sum_{k=0..n-1} (-4)^k*{D_x)^(k+1)*R(n, x) = n*R(n-1, x), n >= 1.
General recurrence for Sheffer row polynomials (see the Roman reference, p. 50, Corollary 3.7.2, rewritten for the present Sheffer notation):
R(n, x) = [(6 + x)*1 + 8*(3 + x)*D_x + 16*x*(D_x)^2]*R(n-1, x), n >= 1, with R(0, x) = 1.
Boas-Buck recurrence for column m (see a comment in A286724 with references): T(n, m) = (2*n!/(n-m))*(3 + 2*m)*Sum_{p=0..n-1-m} 4^p*T(n-1-p, m)/(n-1-p)!, for n > m >= 0, with input T(m, m) = 1.
Explicit form (from the o.g.f.s of diagonal sequences): ((2*(n-m))!/(n-m)!)*binomial(2*n + 1, 2*(n-m)), n >= m >= 0, and vanishing for n < m. - Wolfdieter Lang, Oct 12 2017
A123162 Triangle read by rows: T(n,k) = binomial(2*n - 1, 2*k - 1) for 0 < k <= n and T(n,0) = 1.
1, 1, 1, 1, 3, 1, 1, 5, 10, 1, 1, 7, 35, 21, 1, 1, 9, 84, 126, 36, 1, 1, 11, 165, 462, 330, 55, 1, 1, 13, 286, 1287, 1716, 715, 78, 1, 1, 15, 455, 3003, 6435, 5005, 1365, 105, 1, 1, 17, 680, 6188, 19448, 24310, 12376, 2380, 136, 1, 1, 19, 969, 11628, 50388, 92378, 75582, 27132, 3876, 171, 1
Offset: 0
Examples
Triangle begins: 1; 1, 1; 1, 3, 1; 1, 5, 10, 1; 1, 7, 35, 21, 1; 1, 9, 84, 126, 36, 1; 1, 11, 165, 462, 330, 55, 1; 1, 13, 286, 1287, 1716, 715, 78, 1; 1, 15, 455, 3003, 6435, 5005, 1365, 105, 1; ...
Links
- Muniru A Asiru, Rows n = 0..50, flattened
Programs
-
GAP
Flat(Concatenation([1],List([1..10],n->Concatenation([1],List([1..n],m->Binomial(2*n-1,2*m-1)))))); # Muniru A Asiru, Oct 11 2018
-
Magma
A123162:= func< n,k | k eq 0 select 1 else Binomial(2*n-1, 2*k-1) >; [A123162(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 18 2023
-
Mathematica
T[n_, k_]= If [k==0, 1, Binomial[2*n-1, 2*k-1]]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten
-
Maxima
T(n, k) := if k = 0 then 1 else binomial(2*n - 1, 2*k - 1)$ tabl(nn) := for n:0 thru nn do print(makelist(T(n, k), k, 0, n))$ /* Franck Maminirina Ramaharo, Oct 10 2018 */
-
SageMath
def A123162(n,k): return binomial(2*n-1, 2*k-1) + int(k==0) flatten([[A123162(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 01 2022
Formula
From Paul Barry, May 26 2008: (Start)
T(n,k) = binomial(2*n - 1, 2*k - 1) + 0^k.
Column k has g.f. (x^k/(1 - x)^(2*k + 0^k))*Sum_{j=0..k} binomial(2*k, 2*j)*x^j. (End)
From Franck Maminirina Ramaharo, Oct 10 2018: (Start)
Row n = coefficients in the expansion of ((x + sqrt(x))*(sqrt(x) - 1)^(2*n) + (x - sqrt(x))*(sqrt(x) + 1)^(2*n) + 2*x - 2)/(2*x - 2).
G.f.: (1 - (2 + x)*y + (1 - 2*x)*y^2 - (x - x^2)*y^3)/(1 - (3 + 2*x)*y + (3 + x^2)*y^2 - (1 - 2*x + x^2)*y^3).
E.g.f.: ((x + sqrt(x))*exp(y*(sqrt(x) - 1)^2) + (x - sqrt(x))*exp(y*(sqrt(x) + 1)^2) + (2*x - 2)*exp(y) - 2*x)/(2*x - 2). (End)
From G. C. Greubel, Jul 18 2023: (Start)
Sum_{k=0..n} T(n,k) = A123166(n).
T(n, n-1) = (n-1)*T(n, 1), n >= 2.
T(2*n, n) = A259557(n).
T(2*n+1, n+1) = A002458(n). (End)
Extensions
Edited by N. J. A. Sloane, Oct 04 2006
Partially edited and offset corrected by Franck Maminirina Ramaharo, Oct 10 2018
A343051 A triangle T(n,k) read by rows which can be used to calculate the area of a regular polygon with sides having length 1, provided that the polygon has an odd number of sides.
1, 16, 3, 256, 800, 125, 4096, 62720, 115248, 16807, 65536, 3096576, 23514624, 34012224, 4782969, 1048576, 118947840, 2518720512, 13605588480, 17148710480, 2357947691, 16777216, 3898605568, 185305595904, 2609720475648, 11485488551680, 13234415217504, 1792160394037
Offset: 0
Comments
The examples will demonstrate how this works.
Examples
16*A^2 - 3 = 0, A = 0.433012... the area of an equilateral triangle with sides of length 1. 256*A^4 - 800*A^2 + 125 = 0, A = 1.720477..., the area of a regular pentagon with sides of length 1. 4096*A^6 - 62720*A^4 + 115248*A^2 - 16807 = 0: A = 3.63391244..., the area of a regular heptagon with sides of length 1. 16777216*A^12 - 3898605568*A^10 + 185305595904*A^8 - 2609720475648*A^6 + 11485488551680*A^4 - 13234415217504*A^2 + 1792160394037 = 0: A = 13.185768328323878..., the area of a regular 13-gon with sides of length 1. This sequence can be expressed as a triangle: 1; 16, 3; 256, 800, 125; 4096, 62720, 115248, 16807; 65536, 3096576, 23514624, 34012224, 4782969; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
Crossrefs
Cf. A103327.
Programs
-
Mathematica
T[n_, k_] := Binomial[2n+1, 2k+1] (2n+1)^(2k-1) 16^(n-k); Table[T[n, k], {n, 0, 6}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 29 2021, after Andrew Howroyd *)
Formula
This sequence can be generated from A103327. This example is for the pentagon: 5*L^4 - 10*L^2 + 1 = 0, L = (4/5)*A. Thus 256*A^4 - 800*A^2 + 125 = 0. In the case of a heptagon, L = (4/7)*A.
T(n,k) = binomial(2*n+1, 2*k+1)*(2*n+1)^(2*k-1)*16^(n-k). - Andrew Howroyd, May 23 2021
A380281 Triangle T(n, k) read by rows: T(n, k) = 2^n*binomial(2*n + 1, 2*k + 1) * Pochhammer(1/2, n - k) * Pochhammer(1/2, k).
1, 3, 1, 15, 10, 3, 105, 105, 63, 15, 945, 1260, 1134, 540, 105, 10395, 17325, 20790, 14850, 5775, 945, 135135, 270270, 405405, 386100, 225225, 73710, 10395, 2027025, 4729725, 8513505, 10135125, 7882875, 3869775, 1091475, 135135, 34459425, 91891800, 192972780, 275675400, 268017750, 175429800, 74220300, 18378360, 2027025
Offset: 0
Examples
Triangle begins: n\k 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | [0] 1, [1] 3, 1 [2] 15, 10, 3 [3] 105, 105, 63, 15 [4] 945, 1260, 1134, 540, 105 [5] 10395, 17325, 20790, 14850, 5775, 945 [6] 135135, 270270, 405405, 386100, 225225, 73710, 10395 [7] 2027025, 4729725, 8513505, 10135125, 7882875, 3869775, 1091475, 135135
Links
- Paolo Xausa, Table of n, a(n) for n = 0..11475 (rows 0..150 of triangle, flattened).
- C. Nicholson, The probability integral for two variables, Biometrika 33 (1943), 59-72.
- Eric Weisstein's World of Mathematics, Owen T-Function.
Crossrefs
Programs
-
Maple
T := (n,k) -> 2^n*binomial(2*n + 1, 2*k + 1)*pochhammer(1/2, n - k)*pochhammer(1/2, k): for n from 0 to 7 do seq(T(n, k), k = 0..n) od; # Peter Luschny, Jan 21 2025
-
Mathematica
A380281[n_, k_] := (2*n - 1)!!*Binomial[n, k]*Binomial[2*n + 1, 2*k + 1]/Binomial[2*n, 2*k]; Table[A380281[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Jan 22 2025 *)
-
PARI
T(n, k) = Vec(O(x^(1+n))+(1+x)^(n+1)*hypergeom([1,1/2+n+1],3/2,-x)*(2*(n+1))!/(2^(n+1)*(n+1)!))[1+k]
-
PARI
doublefact(n) = prod(i=0, (n-1)\2, n - 2*i ) T(n, k) = doublefact(2*n-1) * binomial(n, k) * binomial(2*n+1, 2*k+1) / binomial(2*n, 2*k)
-
SageMath
rf = rising_factorial def T(n, k): return 2^n*binomial(2*n+1, 2*k+1)*rf(1/2, n-k)*rf(1/2, k) for n in range(9): print([T(n, k) for k in range(n+1)]) # Peter Luschny, Jan 21 2025
Formula
Coefficients for the series representation of Owen's T-function Ot(x, m) = atan(m)/(2*Pi) + Sum_{s>=0} (-1)^(s+1)*m*(Sum_{r=0..s} T(s, r)*m^(2*s))*x^(2+2*s)/(2*Pi*(2+2*s)!).
Ot(x, m) - atan(m)/(2*Pi) = -V(x, x*m), where V is Nicholson's V-function. V(h, q) = Integral_{x=0..h} Integral_{y=0..q*x/h} phi(x)*phi(y) dydx, where phi(x) is the standard normal density exp(-x^2/2)/sqrt(2*Pi).
G.f. of row n: ((1 + x)^(n+1)*Hypergeometric2F1[1, 1/2 + n + 1, 3/2, -x]*(2*(n+1))!)/(2^(n+1)*(n+1)!).
T(n, k) = (2*n-1)!! * binomial(n, k) * binomial(2*n+1, 2*k+1) / binomial(2*n, 2*k).
Conjecture: Row sums are A076729.
Comments