cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091113 Nonprimes of the form 4*k+1.

Original entry on oeis.org

1, 9, 21, 25, 33, 45, 49, 57, 65, 69, 77, 81, 85, 93, 105, 117, 121, 125, 129, 133, 141, 145, 153, 161, 165, 169, 177, 185, 189, 201, 205, 209, 213, 217, 221, 225, 237, 245, 249, 253, 261, 265, 273, 285, 289, 297, 301, 305, 309, 321, 325, 329, 333, 341, 345
Offset: 1

Views

Author

Labos Elemer, Feb 24 2004

Keywords

Comments

A multiplicative semigroup: if m and n are in the sequence, then so is m*n. - Antti Karttunen, Jul 02 2024

Crossrefs

Cf. A014076, A091236, A373978 (characteristic function).
Subsequence of A016813 (4*n+1).
Cf. also A291745.

Programs

  • GAP
    Filtered(List([0..100],k->4*k+1),n->not IsPrime(n)); # Muniru A Asiru, Mar 10 2019
    
  • Magma
    [n: n in [1..350] | IsIntegral((n-1)/4) and not IsPrime(n)]; // G. C. Greubel, Mar 10 2019
    
  • Maple
    A091113 := proc(n)
        option remember;
        if n =1 then
            1;
        else
            for a from procname(n-1)+4 by 4 do
                if not isprime(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A091113(n),n=1..100) ; # R. J. Mathar, Aug 29 2018
  • Mathematica
    Do[If[ !PrimeQ[n]&&Equal[Mod[n, 4], 1], Print[n]], {n, 1, 1000}]
    Select[4*Range[0,100]+1,!PrimeQ[#]&] (* Harvey P. Dale, Oct 28 2017 *)
  • PARI
    isok(n) = !isprime(n) && !((n-1) % 4); \\ Michel Marcus, Mar 11 2019
  • Sage
    [n for n in (1..350) if ((n-1)/4).is_integer() and not is_prime(n)] # G. C. Greubel, Mar 10 2019