cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091180 Primes of the form 3*p - 2 such that p is a prime.

Original entry on oeis.org

7, 13, 19, 31, 37, 67, 109, 127, 139, 157, 181, 199, 211, 307, 337, 379, 409, 487, 499, 541, 571, 577, 631, 751, 769, 787, 811, 829, 877, 919, 937, 991, 1009, 1039, 1117, 1201, 1291, 1297, 1327, 1381, 1399, 1459, 1471, 1567, 1621, 1669, 1759, 1777, 1801
Offset: 1

Views

Author

Ray Chandler, Dec 27 2003

Keywords

Comments

Mother primes of order 1. - Artur Jasinski, Dec 12 2007

Examples

			From _K. D. Bajpai_, Jun 20 2015: (Start)
a(4) = 31: 3*11 - 2 = 31; A088878(4) = 11.
a(6) = 67: 3*23 - 2 = 67; A088878(6) = 23.
(End)
		

Crossrefs

Programs

  • Magma
    [ k: p in PrimesUpTo(1000) | IsPrime(k)  where k is (3*p-2) ]; // K. D. Bajpai, Jun 20 2015
  • Maple
    A091180:= n-> (3*ithprime(n)-2): select(isprime,[seq((A091180(n), n=1..100))]);  # K. D. Bajpai, Jun 20 2015
  • Mathematica
    n = 1; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, Prime[k]]], {k, 1, 500}]; a (* Artur Jasinski, Dec 12 2007 *)
    Select[Table[3*Prime[n] - 2,{n, 1000}], PrimeQ] (* K. D. Bajpai, Jun 20 2015 *)
  • PARI
    forprime(p =  1, 1000, k =( 3*p -2); if ( isprime(k), print1(k, ", "))); \\  K. D. Bajpai, Jun 20 2015
    

Formula

a(n) = 3*A088878(n)-2.

Extensions

Name clarified by Jinyuan Wang, Aug 06 2021