cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A090696 Numbers k such that k^2 - 11 is a prime.

Original entry on oeis.org

4, 8, 10, 18, 20, 28, 32, 38, 42, 48, 52, 62, 70, 78, 80, 90, 118, 120, 130, 148, 158, 160, 172, 182, 200, 210, 218, 228, 230, 232, 238, 248, 252, 258, 260, 262, 270, 272, 290, 298, 300, 302, 318, 340, 342, 350, 358, 360, 370, 372, 378, 388, 398, 410, 412, 420
Offset: 1

Views

Author

Giovanni Teofilatto, Dec 20 2003

Keywords

References

  • M. Cerasoli, F. Eugeni and M. Protasi, Elementi di Matematica Discreta, Bologna 1988.
  • Emanuele Munarini and Norma Zagaglia Salvi, Matematica Discreta,UTET, CittaStudiEdizioni, Milano 1997.

Crossrefs

A091272 gives primes, A091273 gives prime index.

Programs

Formula

a(n) = 2*A091271(n).

Extensions

Extended by Ray Chandler, Dec 27 2003

A091272 Primes of the form n^2 - 11.

Original entry on oeis.org

5, 53, 89, 313, 389, 773, 1013, 1433, 1753, 2293, 2693, 3833, 4889, 6073, 6389, 8089, 13913, 14389, 16889, 21893, 24953, 25589, 29573, 33113, 39989, 44089, 47513, 51973, 52889, 53813, 56633, 61493, 63493, 66553, 67589, 68633, 72889, 73973
Offset: 1

Views

Author

Ray Chandler, Dec 27 2003

Keywords

Crossrefs

Primes arising in A090696 and A091271, A091273 gives prime index.

Programs

A091273 Indices of primes of the form k^2 - 11.

Original entry on oeis.org

3, 16, 24, 65, 77, 137, 170, 227, 273, 341, 392, 532, 654, 792, 833, 1017, 1645, 1686, 1948, 2456, 2757, 2818, 3210, 3550, 4203, 4589, 4898, 5317, 5397, 5482, 5743, 6186, 6364, 6636, 6735, 6822, 7205, 7300, 8198, 8598, 8713, 8820, 9683, 10920, 11040, 11521, 11997
Offset: 1

Views

Author

Ray Chandler, Dec 27 2003

Keywords

Comments

A091272 indexed by A000040.

Crossrefs

Programs

  • Mathematica
    Select[Range[12000],IntegerQ[Sqrt[Prime[#]+11]]&]  (* Harvey P. Dale, Jan 16 2011 *)

Formula

a(n)=j such that A000040(j)=A091272(n).

Extensions

Offset changed to 1 by Jinyuan Wang, Aug 02 2021
Showing 1-3 of 3 results.