A091491 Triangle, read by rows, where the n-th diagonal is generated from the n-th row by the sum of the products of the n-th row terms with binomial coefficients.
1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 9, 8, 4, 1, 1, 23, 22, 13, 5, 1, 1, 65, 64, 41, 19, 6, 1, 1, 197, 196, 131, 67, 26, 7, 1, 1, 626, 625, 428, 232, 101, 34, 8, 1, 1, 2056, 2055, 1429, 804, 376, 144, 43, 9, 1, 1, 6918, 6917, 4861, 2806, 1377, 573, 197, 53, 10, 1
Offset: 0
Examples
T(7,3) = T(4,0)*C(2,2) + T(4,1)*C(3,2) + T(4,2)*C(5,2) + T(4,3)*C(6,2) = (1)*1 + (4)*3 + (3)*6 + (1)*10 = 41. Rows begin: 1; 1, 1; 1, 2, 1; 1, 4, 3, 1; 1, 9, 8, 4, 1; 1, 23, 22, 13, 5, 1; 1, 65, 64, 41, 19, 6, 1; 1, 197, 196, 131, 67, 26, 7, 1; 1, 626, 625, 428, 232, 101, 34, 8, 1; 1, 2056, 2055, 1429, 804, 376, 144, 43, 9, 1; 1, 6918, 6917, 4861, 2806, 1377, 573, 197, 53, 10, 1; 1, 23714, 23713, 16795, 9878, 5017, 2211, 834, 261, 64, 11, 1; 1, 82500, 82499, 58785, 35072, 18277, 8399, 3382, 1171, 337, 76, 12, 1; ... As to the production matrix M, top row of M^3 = [1, 4, 3, 1, 0, 0, 0, ...].
Links
- Reinhard Zumkeller, Rows n=0..150 of triangle, flattened
Programs
-
Haskell
a091491 n k = a091491_tabl !! n !! k a091491_row n = a091491_tabl !! n a091491_tabl = iterate (\row -> 1 : scanr1 (+) row) [1] -- Reinhard Zumkeller, Jul 12 2012
-
Magma
A091491:= func< n,k | k eq 0 select 1 else k*(&+[Binomial(2*(n-j)-k-1, n-j-1)/(n-j): j in [0..n-k]]) >; [A091491(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 30 2021
-
Mathematica
nmax = 11; t[n_, k_] := k*(2n-k-1)!*HypergeometricPFQ[{1, k-n, -n}, {k/2-n+1/2, k/2-n+1}, 1/4]/(n!*(n-k)!); t[, 0] = 1; Flatten[ Table[ t[n, k], {n, 0, nmax}, {k, 0, n}]] (* _Jean-François Alcover, Nov 14 2011, after Vladimir Kruchinin *)
-
PARI
T(n,k)=if(k>n || n<0 || k<0,0,if(k==0 || k==n,1, sum(j=0,n-k,T(n-k,j)*binomial(k+j-1,k-1)););) for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
-
PARI
T(n,k)=local(X=x+x*O(x^n),Y=y+y*O(y^k)); polcoeff(polcoeff(2/(2-Y*(1-sqrt(1-4*X)))/(1-X),n,x),k,y) for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
-
PARI
T(n,k)=if(n
-
Sage
def A091491(n,k): return 1 if (k==0) else k*sum(binomial(2*(n-j)-k-1, n-j-1)/(n-j) for j in (0..n-k)) flatten([[A091491(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 30 2021
Formula
T(n, k) = Sum_{j=0..n-k} T(n-k, j)*C(k+j-1, k-1).
G.f.: 2/(2-y*(1-sqrt(1-4*x)))/(1-x).
T(n, k) = T(n-1, k-1) + T(n, k+1) for n>0, with T(n, 0)=1.
Recurrence: for k>0, T(n, k) = Sum_{j=k..n} T(n-1, j). - Ralf Stephan, Apr 27 2004
T(n+2,2)= |A099324(n+2)|. - Philippe Deléham, Nov 25 2009
T(n,k) = k * Sum_{i=0..n-k} binomial(2*(n-i)-k-1, n-i-1)/(n-i) for k>0; T(n,0)=1. - Vladimir Kruchinin, Feb 07 2011
From Gary W. Adamson, Jul 26 2011: (Start)
The n-th row of the triangle is the top row of M^n, where M is the following infinite square production matrix in which a column of (1,0,0,0,...) is prepended to an infinite lower triangular matrix of all 1's and the rest zeros:
1, 1, 0, 0, 0, 0, ...
0, 1, 1, 0, 0, 0, ...
0, 1, 1, 1, 0, 0, ...
0, 1, 1, 1, 1, 0, ...
0, 1, 1, 1, 1, 1, ...
(End)
Comments