cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A104402 Matrix inverse of triangle A091491, read by rows.

Original entry on oeis.org

1, -1, 1, 1, -2, 1, 0, 2, -3, 1, 0, -1, 4, -4, 1, 0, 0, -3, 7, -5, 1, 0, 0, 1, -7, 11, -6, 1, 0, 0, 0, 4, -14, 16, -7, 1, 0, 0, 0, -1, 11, -25, 22, -8, 1, 0, 0, 0, 0, -5, 25, -41, 29, -9, 1, 0, 0, 0, 0, 1, -16, 50, -63, 37, -10, 1, 0, 0, 0, 0, 0, 6, -41, 91, -92, 46, -11, 1, 0, 0, 0, 0, 0, -1, 22, -91, 154, -129, 56, -12, 1
Offset: 0

Views

Author

Paul D. Hanna, Mar 05 2005

Keywords

Comments

Row sums are all 0's for n>0. Absolute row sums form 2*A000045(n+1) for n>0, where A000045 = Fibonacci numbers. Sums of squared terms in row n = 2*A003440(n) for n>0, where A003440 = number of binary vectors with restricted repetitions.
Riordan array (1-x+x^2, x(1-x)). - Philippe Deléham, Nov 04 2009

Examples

			Triangle begins as:
   1;
  -1,  1;
   1, -2,  1;
   0,  2, -3,  1;
   0, -1,  4, -4,   1;
   0,  0, -3,  7,  -5,   1;
   0,  0,  1, -7,  11,  -6,  1;
   0,  0,  0,  4, -14,  16, -7,  1;
   0,  0,  0, -1,  11, -25, 22, -8, 1;
		

Crossrefs

Programs

  • Mathematica
    Table[(-1)^(n-k)*(Binomial[k, n-k] + Binomial[k+1, n-k-1]), {n,0,12}, {k,0,n}] //Flatten (* G. C. Greubel, Apr 30 2021 *)
  • PARI
    T(n,k)=local(X=x+x*O(x^n),Y=y+y*O(y^k)); polcoeff(polcoeff((1-X+X^2)/(1-X*Y*(1-X)),n,x),k,y)
    
  • PARI
    T(n,k)=if(n
    				
  • PARI
    T(n,k)=(-1)^(n-k)*(binomial(k,n-k)+binomial(k+1,n-k-1))
    
  • Sage
    def A104402(n,k): return (-1)^(n+k)*(binomial(k,n-k) + binomial(k+1,n-k-1))
    flatten([[A104402(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 30 2021

Formula

G.f.: (1-x+x^2)/(1-x*y*(1-x)).
T(n, k) = T(n-1, k-1) - T(n-2, k-1) for k>0 with T(0, 0)=1, T(1, 0)=-1, T(2, 0)=1, T(n, 0)=0 (n>2).
T(n, k) = (-1)^(n-k)*(C(k, n-k) + C(k+1, n-k-1)).
From Philippe Deléham, Nov 04 2009: (Start)
Sum_{k=0..n} T(n,k) = 0^n.
Sum_{k=0..n} abs(T(n, k)) = 2*Fibonacci(n+1) - [n=0].
Sum_{k=0..n} ( T(n,k) )^2 = 2*A003440(n) - [n=0]. (End)

A096465 Triangle (read by rows) formed by setting all entries in the first column and in the main diagonal ((i,i) entries) to 1 and the rest of the entries by the recursion T(n, k) = T(n-1, k) + T(n, k-1).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 8, 9, 1, 1, 5, 13, 22, 23, 1, 1, 6, 19, 41, 64, 65, 1, 1, 7, 26, 67, 131, 196, 197, 1, 1, 8, 34, 101, 232, 428, 625, 626, 1, 1, 9, 43, 144, 376, 804, 1429, 2055, 2056, 1, 1, 10, 53, 197, 573, 1377, 2806, 4861, 6917, 6918, 1, 1, 11, 64, 261, 834, 2211, 5017, 9878, 16795, 23713, 23714, 1
Offset: 0

Views

Author

Gerald McGarvey, Aug 12 2004

Keywords

Comments

The third column is A034856 (binomial(n+1, 2) + n-1).
The row sums are A014137 (partial sums of Catalan numbers (A000108)).
The "1st subdiagonal" ((i+1,i) entries) are also A014137.
The "2nd subdiagonal" ((i+2,i) entries) is A014138 ( Partial sums of Catalan numbers (starting 1,2,5,...)).
The "3rd subdiagonal" ((i+3,i) entries) is A001453 (Catalan numbers - 1.)
This is the reverse of A091491 - see A091491 for more information. The sequence of antidiagonal sums gives A124642. - Gerald McGarvey, Dec 09 2006

Examples

			Triangle begins as:
  1;
  1, 1;
  1, 2,  1;
  1, 3,  4,  1;
  1, 4,  8,  9,   1;
  1, 5, 13, 22,  23,   1;
  1, 6, 19, 41,  64,  65,   1;
  1, 7, 26, 67, 131, 196, 197, 1;
		

Crossrefs

Programs

  • Haskell
    a096465 n k = a096465_tabl !! n !! k
    a096465_row n = a096465_tabl !! n
    a096465_tabl = map reverse a091491_tabl
    -- Reinhard Zumkeller, Jul 12 2012
    
  • Magma
    A096465:= func< n,k | k eq n select 1 else (n-k)*(&+[Binomial(n+k-2*j, n-j)/(n+k-2*j): j in [0..k]]) >;
    [A096465(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 30 2021
    
  • Maple
    A096465:= (n,k)-> `if`(k=n, 1, (n-k)*add(binomial(n+k-2*j, n-j)/(n+k-2*j), j=0..k));
    seq(seq(A096465(n,k), k=0..n), n=0..12) # G. C. Greubel, Apr 30 2021
  • Mathematica
    T[, 0]= 1; T[n, n_]= 1; T[n_, m_]:= T[n, m]= T[n-1, m] + T[n, m-1]; T[n_, m_] /; n < 0 || m > n = 0; Table[T[n, m], {n, 0, 12}, {m, 0, n}]//Flatten (* Jean-François Alcover, Dec 17 2012 *)
  • Sage
    def A096465(n,k): return 1 if (k==n) else (n-k)*sum( binomial(n+k-2*j, n-j)/(n+k-2*j) for j in (0..k))
    flatten([[A096465(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 30 2021

Formula

From G. C. Greubel, Apr 30 2021: (Start)
T(n, k) = (n-k) * Sum_{j=0..k} binomial(n+k-2*j, n-j)/(n+k-2*j) with T(n,n) = 1.
T(n, k) = A091491(n, n-k).
Sum_{k=0..n} T(n,k) = Sum_{j=0..n} A000108(j) = A014137(n). (End)

Extensions

Offset changed by Reinhard Zumkeller, Jul 12 2012

A099324 Expansion of (1 + sqrt(1 + 4x))/(2(1 + x)).

Original entry on oeis.org

1, 0, -1, 3, -8, 22, -64, 196, -625, 2055, -6917, 23713, -82499, 290511, -1033411, 3707851, -13402696, 48760366, -178405156, 656043856, -2423307046, 8987427466, -33453694486, 124936258126, -467995871776, 1757900019100, -6619846420552, 24987199492704, -94520750408708
Offset: 0

Views

Author

Paul Barry, Oct 12 2004

Keywords

Comments

Binomial transform is A099323. Second binomial transform is A072100.
Hankel transform is A049347. - Paul Barry, Aug 10 2009

Crossrefs

Cf. A014138.

Programs

  • Maple
    f:= gfun:-rectoproc({(2+4*n)*a(n)+(4+5*n)*a(n+1)+(n+2)*a(n+2), a(0) = 1, a(1) = 0}, a(n), remember):
    map(f, [$0..50]); # Robert Israel, Mar 27 2018
  • Mathematica
    CoefficientList[Series[(1+Sqrt[1+4x])/(2(1+x)),{x,0,40}],x] (* Harvey P. Dale, Jan 30 2014 *)

Formula

a(n) = Sum_{k=0..2n} (2*0^(2n-k)-1)*C(k,floor(k/2)). - Paul Barry, Aug 10 2009
|a(n+2)| = A091491(n+2,2). - Philippe Deléham, Nov 25 2009
G.f.: T(0)/(2+2*x), where T(k) = k+2 - 2*x*(2*k+1) + 2*x*(k+2)*(2*k+3)/T(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 27 2013
D-finite with recurrence: (2+4*n)*a(n) + (4+5*n)*a(n+1) + (n+2)*a(n+2) = 0. - Robert Israel, Mar 27 2018

A185943 Riordan array ((1/(1-x))^m, x*A000108(x)), m = 2.

Original entry on oeis.org

1, 2, 1, 3, 3, 1, 4, 7, 4, 1, 5, 16, 12, 5, 1, 6, 39, 34, 18, 6, 1, 7, 104, 98, 59, 25, 7, 1, 8, 301, 294, 190, 92, 33, 8, 1, 9, 927, 919, 618, 324, 134, 42, 9, 1, 10, 2983, 2974, 2047, 1128, 510, 186, 52, 10, 1, 11, 9901, 9891, 6908, 3934, 1887, 759, 249, 63, 11, 1
Offset: 0

Views

Author

Vladimir Kruchinin, Feb 07 2011

Keywords

Examples

			Array begins
  1;
  2,   1;
  3,   3,   1;
  4,   7,   4,   1;
  5,  16,  12,   5,   1;
  6,  39,  34,  18,   6,   1;
  7, 104,  98,  59,  25,   7,   1;
  8, 301, 294, 190,  92,  33,   8,   1;
Production matrix begins:
   2, 1;
  -1, 1, 1;
   1, 1, 1, 1;
   0, 1, 1, 1, 1;
   0, 1, 1, 1, 1, 1;
   0, 1, 1, 1, 1, 1, 1;
   0, 1, 1, 1, 1, 1, 1, 1;
   0, 1, 1, 1, 1, 1, 1, 1, 1;
   ... _Philippe Deléham_, Sep 20 2014
		

Crossrefs

Cf. A091491 (m=1), A185944 (m=3), A185945 (m=4).
Row sums A014140. Cf. A000108, A014143.

Programs

  • Mathematica
    r[n_, k_, m_] := k*Sum[ Binomial[i + m - 1, m - 1]*Binomial[2*(n - i) - k - 1, n - i - 1]/(n - i), {i, 0, n - k}]; r[n_, 0, 2] := n + 1; Table[r[n, k, 2], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 13 2012, from formula *)
  • Sage
    @CachedFunction
    def A(n, k):
        if n==k: return n+1
        return add(A(n-1, j) for j in (0..k))
    A185943 = lambda n,k: A(n, n-k)
    for n in (0..7) :
         print([A185943(n, k) for k in (0..n)])  # Peter Luschny, Nov 14 2012

Formula

R(n,k,m) = k*Sum_{i=0..n-k} binomial(i+m-1, m-1)*binomial(2*(n-i)-k-1, n-i-1)/(n-i), m = 2, k > 0.
R(n,0,2) = n + 1.
Conjecture: R(n,1,2) = A014140(n-1). R(n,2,2) = A014143(n-2). - R. J. Mathar, Feb 11 2011

A185944 Riordan array ( (1/(1-x))^m , x*A000108(x) ), m = 3.

Original entry on oeis.org

1, 3, 1, 6, 4, 1, 10, 11, 5, 1, 15, 27, 17, 6, 1, 21, 66, 51, 24, 7, 1, 28, 170, 149, 83, 32, 8, 1, 36, 471, 443, 273, 124, 41, 9, 1, 45, 1398, 1362, 891, 448, 175, 51, 10, 1, 55, 4381, 4336, 2938, 1576, 685, 237, 62, 11, 1, 66, 14282, 14227, 9846, 5510, 2572, 996, 311, 74, 12, 1
Offset: 0

Views

Author

Vladimir Kruchinin, Feb 07 2011

Keywords

Examples

			Array begins
   1;
   3,   1;
   6,   4,   1;
  10,  11,   5,   1;
  15,  27,  17,   6,   1;
  21,  66,  51,  24,   7,   1;
  28, 170, 149,  83,  32,   8,  1;
  36, 471, 443, 273, 124,  41,  9,   1;
Production matrix begins:
   3, 1;
  -3, 1, 1;
   4, 1, 1, 1;
  -2, 1, 1, 1, 1;
   1, 1, 1, 1, 1, 1;
   0, 1, 1, 1, 1, 1, 1;
   0, 1, 1, 1, 1, 1, 1, 1;
   0, 1, 1, 1, 1, 1, 1, 1, 1;
   ... _Philippe Deléham_, Sep 20 2014
		

Crossrefs

Cf. A091491 (m=1), A185943 (m=2), A185945 (m=4), A014151 (column k=1).

Programs

  • Mathematica
    r[n_, k_, m_] := k*Sum[ Binomial[i + m - 1, m - 1]*Binomial[2*(n - i) - k - 1, n - i - 1]/(n - i), {i, 0, n - k}]; r[n_, 0, 3] = (n + 1)*(n + 2)/2; Table[ r[n, k, 3], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 21 2013 *)

Formula

R(n,k,m) = k*Sum_(i=0..n-k,binomial(i+m-1,m-1)*binomial(2*(n-i)-k-1,n-i-1)/(n-i)), m=3, k>0.
R(n,0,3) = (n+1)*(n+2)/2 = A000217(n+1).

A185945 Riordan array ( (1/(1-x))^m , x*A000108(x) ), m =4.

Original entry on oeis.org

1, 4, 1, 10, 5, 1, 20, 16, 6, 1, 35, 43, 23, 7, 1, 56, 109, 74, 31, 8, 1, 84, 279, 223, 114, 40, 9, 1, 120, 750, 666, 387, 164, 50, 10, 1, 165, 2148, 2028, 1278, 612, 225, 61, 11, 1, 220, 6529, 6364, 4216, 2188, 910, 298, 73, 12, 1, 286, 20811, 20591, 14062, 7698, 3482, 1294, 384, 86, 13, 1
Offset: 0

Views

Author

Vladimir Kruchinin, Feb 07 2011

Keywords

Examples

			Array begins
    1;
    4,   1;
   10,   5,   1;
   20,  16,   6,   1;
   35,  43,  23,   7,   1;
   56, 109,  74,  31,   8,   1;
   84, 279, 223, 114,  40,   9,   1;
  120, 750, 666, 387, 164,  50,  10,   1;
Production matrix begins:
   4, 1;
  -6, 1, 1;
  10, 1, 1, 1;
  -9, 1, 1, 1, 1;
   7, 1, 1, 1, 1, 1;
  -3, 1, 1, 1, 1, 1, 1;
   1, 1, 1, 1, 1, 1, 1, 1;
   0, 1, 1, 1, 1, 1, 1, 1, 1;
   0, 1, 1, 1, 1, 1, 1, 1, 1, 1;
   0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
  ... _Philippe Deléham_, Sep 20 2014
		

Crossrefs

Cf. A091491 (m=1), A185943 (m=2), A185944 (m=3).

Programs

  • Mathematica
    r[n_, k_, m_] := k*Sum[ Binomial[i + m - 1, m - 1]*Binomial[2*(n - i) - k - 1, n - i - 1]/(n - i), {i, 0, n - k}]; r[n_, 0, 4] = Binomial[n + 3, 3]; Table[ r[n, k, 4], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 21 2013 *)

Formula

R(n,k,m) = k*Sum_{i=0..n-k} binomial(i+m-1, m-1)*binomial(2*(n-i)-k-1, n-i-1)/(n-i), m=4, k > 0.
R(n,0,4) = binomial(n+3,3) = A000292(n+1).

A155586 A modified Catalan sequence array.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 2, 1, 1, 1, 14, 5, 2, 1, 1, 1, 42, 14, 5, 2, 1, 1, 1, 132, 42, 14, 5, 2, 1, 1, 1, 429, 132, 42, 14, 5, 2, 1, 1, 1, 1430, 429, 132, 42, 14, 5, 2, 1, 1, 1, 4862, 1430, 429, 132, 42, 14, 5, 2, 1, 1, 1, 16796, 4862, 1430, 429, 132, 42, 14, 5, 2, 1, 1
Offset: 0

Views

Author

Paul Barry, Jan 24 2009

Keywords

Comments

Row sums are in A155587. Stieltjes associate array to A091491.

Examples

			Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins
  1;
  1,    1;
  1,    1,   1;
  1,    2,   1,   1;
  1,    5,   2,   1,  1;
  1,   14,   5,   2,  1,  1;
  1,   42,  14,   5,  2,  1, 1;
  1,  132,  42,  14,  5,  2, 1, 1;
  1,  429, 132,  42, 14,  5, 2, 1, 1;
  1, 1430, 429, 132, 42, 14, 5, 2, 1, 1;
  ...
		

Crossrefs

Formula

T(n,k) = [k <= n] * if(k=0, 1, A000108(n-k)) for 0 <= k <= n, where [ ] is the Iverson bracket.
Bivariate o.g.f.: 1/(1 - x) + c(x) * x*y/(1 - x*y), where c(x) is the o.g.f. of A000108. - Petros Hadjicostas, Aug 03 2020

A168377 Riordan array (1/(1 + x), x*c(x)), where c(x) is the o.g.f. of Catalan numbers A000108.

Original entry on oeis.org

1, -1, 1, 1, 0, 1, -1, 2, 1, 1, 1, 3, 4, 2, 1, -1, 11, 10, 7, 3, 1, 1, 31, 32, 21, 11, 4, 1, -1, 101, 100, 69, 37, 16, 5, 1, 1, 328, 329, 228, 128, 59, 22, 6, 1, -1, 1102, 1101, 773, 444, 216, 88, 29, 7, 1, 1, 3760, 3761, 2659, 1558, 785, 341, 125, 37, 8, 1
Offset: 0

Views

Author

Philippe Deléham, Nov 24 2009

Keywords

Examples

			Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
   1;
  -1,   1;
   1,   0,   1;
  -1,   2,   1,  1;
   1,   3,   4,  2,  1;
  -1,  11,  10,  7,  3,  1;
   1,  31,  32, 21, 11,  4, 1;
  -1, 101, 100, 69, 37, 16, 5, 1;
  ...
From _Philippe Deléham_, Sep 14 2014: (Start)
Production matrix begins:
  -1, 1
   0, 1, 1
   0, 1, 1, 1
   0, 1, 1, 1, 1
   0, 1, 1, 1, 1, 1
   0, 1, 1, 1, 1, 1, 1
   0, 1, 1, 1, 1, 1, 1, 1
   0, 1, 1, 1, 1, 1, 1, 1, 1
   ... (End)
		

Crossrefs

Programs

  • PARI
    A000108(n) = binomial(2*n, n)/(n+1);
    A032357(n) = sum(k=0, n, (-1)^(n-k)*A000108(k));
    T(n, k) = if ((k==0), (-1)^n, if ((n<0) || (k<0), 0, if (k==1, A032357(n-1), if (n > k-1, T(n, k-1) - T(n-1, k-2), 0))));
    for(n=0, 10, for (k=0, n, print1(T(n, k), ", ")); print); \\ Petros Hadjicostas, Aug 08 2020

Formula

T(n,0) = (-1)^n and T(n,n) = 1.
Sum_{0 <= k <= n} T(n,k) = A032357(n).
From Petros Hadjicostas, Aug 08 2020: (Start)
T(n,k) = T(n,k-1) - T(n-1,k-2) for 2 <= k <= n with initial conditions T(n,0) = (-1)^n (n >= 0) and T(n,1) = A032357(n-1) (n >= 1).
T(n,2) = A033297(n).
T(n,n-1) = n - 2 for n >= 1.
|T(n,k)| = |A096470(n,n-k)| for 0 <= k <= n.
Bivariate o.g.f.: 1/((1 + x)*(1 - x*y*c(x))), where c(x) is the o.g.f. of A000108.
Bivariate o.g.f.: (1 - y + x*y*c(x))/((1 + x)*(1 - y + x*y^2)).
Bivariate o.g.f. of |T(n,k)|: (o.g.f. of T(n,k)) + 2*x/(1 - x^2). (End)
Showing 1-8 of 8 results.