cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A049347 Period 3: repeat [1, -1, 0].

Original entry on oeis.org

1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0
Offset: 0

Views

Author

Keywords

Comments

G.f. 1/cyclotomic(3, x) (the third cyclotomic polynomial).
Self-convolution yields (-1)^n*A099254(n). - R. J. Mathar, Apr 06 2008
Hankel transform of A099324. - Paul Barry, Aug 10 2009
A057083(n) = p(-1) where p(x) is the unique degree-n polynomial such that p(k) = a(k) for k = 0..n. - Michael Somos, Apr 29 2012
a(n) appears, together with b(n) = A099837(n+3) in the formula 2*exp(2*Pi*n*I/3) = b(n) + a(n)*sqrt(3)*I, n >= 0, with I = sqrt(-1). See A164116 for the case N=5. - Wolfdieter Lang, Feb 27 2014
The binomial transform is 1, 0, -1, -1, 0, 1, 1, 0, -1, -1.. (see A010891). The inverse binom. transform is 1, -2, 3, -3, 0, 9, -27, 54, -81.. (see A057682). - R. J. Mathar, Feb 25 2023

Examples

			G.f. = 1 - x + x^3 - x^4 + x^6 - x^7 + x^9 - x^10 + x^12 - x^13 + x^15 + ...
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 175.

Crossrefs

Alternating row sums of A049310 (Chebyshev-S). [Wolfdieter Lang, Nov 04 2011]

Programs

Formula

G.f.: 1/(1+x+x^2).
a(n) = +1 if n mod 3 = 0, a(n) = -1 if n mod 3 = 1, else 0.
a(n) = S(n, -1) = U(n, -1/2) (Chebyshev's U(n, x) polynomials.)
a(n) = 2*sqrt(3)*cos(2*Pi*n/3 + Pi/6)/3. - Paul Barry, Mar 15 2004
a(n) = Sum_{k >= 0} (-1)^(n-k)*C(n-k, k).
Given g.f. A(x), then B(x) = x * A(x) satisfies 0 = f(B(x), B(x^2)) where f(u, v) = u^2 - v + 2*u*v. - Michael Somos, Oct 03 2006
Euler transform of length 3 sequence [-1, 0, 1]. - Michael Somos, Oct 03 2006
a(n) = b(n+1) where b(n) is multiplicative with b(3^e) = 0^e, b(p^e) = 1 if p == 1 (mod 3), b(p^e) = (-1)^e if p == 2 (mod 3). - Michael Somos, Oct 03 2006
From Michael Somos, Oct 03 2006: (Start)
G.f.: (1 - x) /(1 - x^3).
a(n) = -a(1-n) = -a(n-1) - a(n-2) = a(n-3). (End)
From Michael Somos, Apr 29 2012: (Start)
G.f.: 1 / (1 + x / ( 1 - x / (1 + x))).
a(n) = (-1)^n * A010892(n).
a(n) * n! = A194770(n+1).
Revert transform of A001006. Convolution inverse of A130716. MOBIUS transform of A002324. EULER transform is A111317. BIN1 transform of itself. STIRLING transform is A143818(n+2). (End)
a(-n) = A057078(n). a(n) = A106510(n+1) unless n=0. - Michael Somos, Oct 15 2008
G.f. A(x) = 1/(1+x+x^2) = Q(0); Q(k) = 1- x/(1 - x^2/(x^2 - 1 + x/(x - 1 + x^2/(x^2 - 1/Q(k+1))))); (continued fraction 3 kind, 5-step ). - Sergei N. Gladkovskii, Jun 19 2012
a(n) = -1 + floor(67/333*10^(n+1)) mod 10. - Hieronymus Fischer, Jan 03 2013
a(n) = -1 + floor(19/26*3^(n+1)) mod 3. - Hieronymus Fischer, Jan 03 2013
a(n) = ceiling((n-1)/3) - ceiling(n/3) + floor(n/3) - floor((n-1)/3). - Wesley Ivan Hurt, Dec 06 2013
a(n) = n + 1 - 3*floor((n+2)/3). - Mircea Merca, Feb 04 2014
a(n) = A102283(n+1) for all n in Z. - Michael Somos, Sep 24 2019
E.g.f.: exp(-x/2)*(3*cos(sqrt(3)*x/2) - sqrt(3)*sin(sqrt(3)*x/2))/3. - Stefano Spezia, Oct 26 2022

Extensions

Edited by Charles R Greathouse IV, Mar 23 2010

A091491 Triangle, read by rows, where the n-th diagonal is generated from the n-th row by the sum of the products of the n-th row terms with binomial coefficients.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 9, 8, 4, 1, 1, 23, 22, 13, 5, 1, 1, 65, 64, 41, 19, 6, 1, 1, 197, 196, 131, 67, 26, 7, 1, 1, 626, 625, 428, 232, 101, 34, 8, 1, 1, 2056, 2055, 1429, 804, 376, 144, 43, 9, 1, 1, 6918, 6917, 4861, 2806, 1377, 573, 197, 53, 10, 1
Offset: 0

Views

Author

Paul D. Hanna, Jan 14 2004

Keywords

Comments

Row sums are A014137 (partial sums of Catalan numbers A000108). Columns equal the partial sums of the columns of the Catalan convolution triangle A033184. Columns include A014137, A014138, A001453.
Apart from the first column, any term is the partial sum of terms of the row above, when summing from the right. - Ralf Stephan, Apr 27 2004
Matrix inverse equals triangle A104402.
Riordan array (1/(1-x), x*c(x)) where c(x) is the g.f. of A000108. - Philippe Deléham, Nov 04 2009

Examples

			T(7,3) = T(4,0)*C(2,2) + T(4,1)*C(3,2) + T(4,2)*C(5,2) + T(4,3)*C(6,2) = (1)*1 + (4)*3 + (3)*6 + (1)*10 = 41.
Rows begin:
  1;
  1,     1;
  1,     2,     1;
  1,     4,     3,     1;
  1,     9,     8,     4,     1;
  1,    23,    22,    13,     5,     1;
  1,    65,    64,    41,    19,     6,    1;
  1,   197,   196,   131,    67,    26,    7,    1;
  1,   626,   625,   428,   232,   101,   34,    8,    1;
  1,  2056,  2055,  1429,   804,   376,  144,   43,    9,   1;
  1,  6918,  6917,  4861,  2806,  1377,  573,  197,   53,  10,  1;
  1, 23714, 23713, 16795,  9878,  5017, 2211,  834,  261,  64, 11,  1;
  1, 82500, 82499, 58785, 35072, 18277, 8399, 3382, 1171, 337, 76, 12, 1;
  ...
As to the production matrix M, top row of M^3 = [1, 4, 3, 1, 0, 0, 0, ...].
		

Crossrefs

Programs

  • Haskell
    a091491 n k = a091491_tabl !! n !! k
    a091491_row n = a091491_tabl !! n
    a091491_tabl = iterate (\row -> 1 : scanr1 (+) row) [1]
    -- Reinhard Zumkeller, Jul 12 2012
    
  • Magma
    A091491:= func< n,k | k eq 0 select 1 else k*(&+[Binomial(2*(n-j)-k-1, n-j-1)/(n-j): j in [0..n-k]]) >;
    [A091491(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 30 2021
    
  • Mathematica
    nmax = 11; t[n_, k_] := k*(2n-k-1)!*HypergeometricPFQ[{1, k-n, -n}, {k/2-n+1/2, k/2-n+1}, 1/4]/(n!*(n-k)!); t[, 0] = 1; Flatten[ Table[ t[n, k], {n, 0, nmax}, {k, 0, n}]] (* _Jean-François Alcover, Nov 14 2011, after Vladimir Kruchinin *)
  • PARI
    T(n,k)=if(k>n || n<0 || k<0,0,if(k==0 || k==n,1, sum(j=0,n-k,T(n-k,j)*binomial(k+j-1,k-1)););)
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
    
  • PARI
    T(n,k)=local(X=x+x*O(x^n),Y=y+y*O(y^k)); polcoeff(polcoeff(2/(2-Y*(1-sqrt(1-4*X)))/(1-X),n,x),k,y)
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
    
  • PARI
    T(n,k)=if(n
    				
  • Sage
    def A091491(n,k): return 1 if (k==0) else k*sum(binomial(2*(n-j)-k-1, n-j-1)/(n-j) for j in (0..n-k))
    flatten([[A091491(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 30 2021

Formula

T(n, k) = Sum_{j=0..n-k} T(n-k, j)*C(k+j-1, k-1).
G.f.: 2/(2-y*(1-sqrt(1-4*x)))/(1-x).
T(n, k) = T(n-1, k-1) + T(n, k+1) for n>0, with T(n, 0)=1.
Recurrence: for k>0, T(n, k) = Sum_{j=k..n} T(n-1, j). - Ralf Stephan, Apr 27 2004
T(n+2,2)= |A099324(n+2)|. - Philippe Deléham, Nov 25 2009
T(n,k) = k * Sum_{i=0..n-k} binomial(2*(n-i)-k-1, n-i-1)/(n-i) for k>0; T(n,0)=1. - Vladimir Kruchinin, Feb 07 2011
From Gary W. Adamson, Jul 26 2011: (Start)
The n-th row of the triangle is the top row of M^n, where M is the following infinite square production matrix in which a column of (1,0,0,0,...) is prepended to an infinite lower triangular matrix of all 1's and the rest zeros:
1, 1, 0, 0, 0, 0, ...
0, 1, 1, 0, 0, 0, ...
0, 1, 1, 1, 0, 0, ...
0, 1, 1, 1, 1, 0, ...
0, 1, 1, 1, 1, 1, ...
(End)
Sum_{k=0..n} T(n,k) = Sum_{j=0..n} A000108(j) = A014137(n). - G. C. Greubel, Apr 30 2021
Showing 1-2 of 2 results.