cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A025265 a(n) = a(1)*a(n-1) + a(2)*a(n-2) + ... + a(n-1)*a(1) for n >= 4.

Original entry on oeis.org

1, 0, 1, 2, 4, 9, 22, 56, 146, 388, 1048, 2869, 7942, 22192, 62510, 177308, 506008, 1451866, 4185788, 12119696, 35227748, 102753800, 300672368, 882373261, 2596389190, 7658677856, 22642421206, 67081765932, 199128719896, 592179010350, 1764044315540
Offset: 1

Views

Author

Keywords

Comments

With offset 0, a(n) is the number of 021-avoiding ascent sequences of length n with no isolated 0's. For example, a(4)=4 counts 0000, 0001, 0011, 0012. - David Callan, Nov 13 2019

Crossrefs

Programs

  • Mathematica
    nmax = 30; aa = ConstantArray[0,nmax]; aa[[1]] = 1; aa[[2]] = 0; aa[[3]] = 1; Do[aa[[n]] = Sum[aa[[k]] * aa[[n-k]],{k,1,n-1}],{n,4,nmax}]; aa (* Vaclav Kotesovec, Jan 25 2015 *)
    CoefficientList[Series[(1-Sqrt[1-4x+4x^2-4x^3])/2,{x,0,40}],x] (* Harvey P. Dale, Jun 02 2017 *)
  • Maxima
    a(n):=sum((binomial(2*k,k)*(sum(binomial(j,n-k-j-1)*binomial(k+1,j),j,0,k+1))*(-1)^(-n+k+1))/(k+1),k,0,n); /* Vladimir Kruchinin, May 10 2018  */
  • PARI
    a(n)=polcoeff((1-sqrt(1-4*x+4*x^2-4*x^3+x*O(x^n)))/2,n)
    
  • PARI
    a(n)=if(n<1,0,polcoeff(subst(serreverse(x-x^2+x*O(x^n)),x,x-x^2+x^3),n))
    

Formula

a(n+2) = A091561(n).
G.f.: (1-sqrt(1-4*x+4*x^2-4*x^3))/2. - Michael Somos, Jun 08 2000
G.f. A(x) satisfies 0=f(x, A(x)) where f(x, y)=(x-x^2+x^3)-(y-y^2). - Michael Somos, May 26 2005
D-finite with recurrence n*a(n) +2*(3-2*n)*a(n-1) +4*(n-3)*a(n-2)+ 2*(9-2*n)*a(n-3)=0. - R. J. Mathar, Aug 14 2012
a(n) = Sum_{k=0..n} C(k)*Sum_{j=0..k+1} binomial(j,n-k-j-1)*binomial(k+1,j)*(-1)^(-n+k-1), where C(k) is Catalan numbers (A000108) - Vladimir Kruchinin, May 10 2018

A152225 Number of Dyck paths of semilength n with no peaks at height 0 (mod 3) and no valleys at height 2 (mod 3).

Original entry on oeis.org

1, 1, 2, 4, 9, 22, 56, 146, 388, 1048, 2869, 7942, 22192, 62510, 177308, 506008, 1451866, 4185788, 12119696, 35227748, 102753800, 300672368, 882373261, 2596389190, 7658677856, 22642421206, 67081765932, 199128719896, 592179010350, 1764044315540, 5263275015120
Offset: 0

Views

Author

Majun (majun(AT)math.sinica.edu.tw), Nov 29 2008

Keywords

Comments

The antidiagonal sums of A091894 equal this sequence. - Johannes W. Meijer, Sep 13 2012

Crossrefs

Cf. A091561, A025265, A025247. - R. J. Mathar, Dec 03 2008

Programs

  • Maple
    f:= gfun:-rectoproc({(n+2)*a(n) - 2*(2*n+1)*a(n-1) + 4*(n-1)*a(n-2) + 2*(5-2*n)*a(n-3)=0,a(0)=1,a(1)=1,a(2)=2,a(3)=4},a(n),remember):
    map(f, [$0..40]); # Robert Israel, Jan 09 2018
  • Mathematica
    CoefficientList[Series[(1 - 2 x + 2 x^2 - Sqrt[1 - 4 x + 4 x^2 - 4 x^3])/(2 x^2), {x, 0, 30}], x] (* Michael De Vlieger, Jan 09 2018 *)

Formula

G.f.: (1 - 2*x + 2*x^2 - sqrt(1 - 4*x + 4*x^2 - 4*x^3))/(2*x^2).
Conjecture: (n+2)*a(n) - 2*(2*n+1)*a(n-1) + 4*(n-1)*a(n-2) + 2*(5-2*n)*a(n-3)=0. - R. J. Mathar, Aug 14 2012
This conjecture follows from the differential equation (4*x^4-4*x^3+4*x^2-x)*y' + (2*x^3-4*x^2+6*x-2)*y - 2*x^3+2*x^2-3*x+2=0 satisfied by the g.f. - Robert Israel, Jan 09 2018

Extensions

Edited by Emeric Deutsch, Dec 20 2008

A273896 Triangle read by rows: T(n,k) is the number of bargraphs of semiperimeter n having k UHU configurations, where U=(0,1), H(1,0); (n>=2, k>=0).

Original entry on oeis.org

1, 2, 4, 1, 9, 4, 22, 12, 1, 56, 35, 6, 146, 104, 24, 1, 388, 312, 86, 8, 1048, 938, 300, 40, 1, 2869, 2824, 1032, 170, 10, 7942, 8520, 3502, 680, 60, 1, 22192, 25763, 11748, 2632, 295, 12, 62510, 78064, 39072, 9926, 1330, 84, 1, 177308, 236976, 129100, 36640, 5712, 469, 14, 506008, 720574, 424344, 132960, 23660, 2352, 112, 1
Offset: 2

Views

Author

Emeric Deutsch, Jun 02 2016

Keywords

Comments

Sum of entries in row n = A082582(n).
T(n,0) = A091561(n-1).
Sum(k*T(n,k), k>=0) = A273714(n-1). This implies that the number of UHUs in all bargraphs of semiperimeter n is equal to the number of doublerises in all bargraphs of semiperimeter n-1.

Examples

			Row 4 is [4,1] because the 5 (=A082582(4)) bargraphs of semiperimeter 4 correspond to the compositions [1,1,1], [1,2], [2,1], [2,2], [3] and the corresponding drawings show that they have 0,1,0,0,0 UHU's.
Triangle starts
1;
2;
4,1;
9,4;
22,12,1;
56,35,6.
		

Crossrefs

Programs

  • Maple
    eq := z*G^2-(1-2*z-t*z^2)*G+z^2 = 0: G := RootOf(eq, G): Gser := simplify(series(G, z = 0, 20)): for n from 2 to 18 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 2 to 18 do seq(coeff(P[n], t, j), j = 0 .. degree(P[n])) end do; # yields sequence in triangular form
    # second Maple program:
    b:= proc(n, y, t, h) option remember; expand(
          `if`(n=0, (1-t), `if`(t<0, 0, b(n-1, y+1, 1, 0)*z^h)+
          `if`(t>0 or y<2, 0, b(n, y-1, -1, 0))+
          `if`(y<1, 0, b(n-1, y, 0, `if`(t>0, 1, 0)))))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(n, 0$3)):
    seq(T(n), n=2..22); # Alois P. Heinz, Jun 06 2016
  • Mathematica
    b[n_, y_, t_, h_] := b[n, y, t, h] = Expand[If[n==0, 1-t, If[t<0, 0, b[n-1, y+1, 1, 0]*z^h] + If[t>0 || y<2, 0, b[n, y-1, -1, 0]] + If[y<1, 0, b[n-1, y, 0, If[t>0, 1, 0]]]]]; T[n_] := Function[p, Table[Coefficient[p, z, i], {i, 0, Exponent[p, z]}]][b[n, 0, 0, 0]]; Table[T[n], {n, 2, 22}] // Flatten (* Jean-François Alcover, Dec 02 2016 after Alois P. Heinz *)

Formula

G.f.: G=G(t,z), where t marks number of UHU's and z marks semiperimeter, satisfies zG^2-(1-2z-tz^2)G+z^2 = 0.
Showing 1-3 of 3 results.