A091669 a(n) = (2^(n-1)/n!) * Product_{k=1..n-1} (2^k-1).
1, 1, 2, 7, 42, 434, 7812, 248031, 14055090, 1436430198, 267176016828, 91151551074486, 57425477176926180, 67196011936600334340, 146782968474309770332296, 601204690999713530559792879
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..86
Programs
-
Magma
[1] cat [2^(n-1)/Factorial(n)*&*[(2^k-1):k in [1..n-1]]:n in [2..16]]; // Marius A. Burtea, Jan 16 2020
-
Maple
seq( (2^(n-1)/n!)*mul(2^j-1, j=1..n-1), n=1..20); # G. C. Greubel, Feb 05 2020
-
Mathematica
Table[QFactorial[n-1, 2] 2^(n-1)/n!, {n, 20}]
-
PARI
a(n) = (2^(n-1)/n!) * prod(k=1, n-1, 2^k-1); \\ Michel Marcus, Jan 16 2020
-
Sage
from sage.combinat.q_analogues import q_factorial [2^(n-1)*q_factorial(n-1, 2)/factorial(n) for n in (1..20)] # G. C. Greubel, Feb 05 2020
Formula
a(n) = 2^(n-1)*A005329(n-1)/n!.
a(n) = Product_{k=2..n} (2^k-2)/k = Product_{k=2..n} A225101(k)/A159353(k). - Thomas Ordowski, Jan 16 2020
Extensions
Corrected and edited by Thomas Ordowski, Jan 16 2020
Comments