cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091954 Number of odd proper divisors of n. That is, the number of odd divisors of n that are less than n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 3, 1, 1, 3, 1, 2, 3, 2, 1, 2, 2, 2, 3, 2, 1, 4, 1, 1, 3, 2, 3, 3, 1, 2, 3, 2, 1, 4, 1, 2, 5, 2, 1, 2, 2, 3, 3, 2, 1, 4, 3, 2, 3, 2, 1, 4, 1, 2, 5, 1, 3, 4, 1, 2, 3, 4, 1, 3, 1, 2, 5, 2, 3, 4, 1, 2, 4, 2, 1, 4, 3, 2, 3, 2, 1, 6, 3, 2, 3, 2, 3, 2, 1, 3, 5, 3, 1, 4, 1, 2, 7, 2, 1, 4, 1, 4
Offset: 1

Views

Author

Mohammad K. Azarian, Mar 12 2004

Keywords

Examples

			The odd divisors of 15 that are less than 15 are 1, 3 and 5. Therefore there are three odd divisors of 15 that are less than 15.
		

Crossrefs

Sum of the k-th powers of the odd proper divisors of n for k=0..10: this sequence (k=0), A091570 (k=1), A351647 (k=2), A352031 (k=3), A352032 (k=4), A352033 (k=5), A352034 (k=6), A352035 (k=7), A352036 (k=8), A352037 (k=9), A352038 (k=10).
Sum of the k-th powers of the divisor complements of the odd proper divisors of n for k=0..10: this sequence (k=0), A352047 (k=1), A352048 (k=2), A352049 (k=3), A352050 (k=4), A352051 (k=5), A352052 (k=6), A352053 (k=7), A352054 (k=8), A352055 (k=9), A352056 (k=10).

Programs

  • Mathematica
    Count[Most[Divisors[#]],?OddQ]&/@Range[100] (* _Harvey P. Dale, Sep 28 2012 *)
    a[n_] := DivisorSigma[0, n/2^IntegerExponent[n, 2]] - Boole[OddQ[n]]; Array[a, 100] (* Amiram Eldar, Jun 11 2022 *)
  • PARI
    A091954(n) = sumdiv(n,d,(dAntti Karttunen, Oct 04 2017
    
  • PARI
    my(N=66, x='x+O('x^N)); concat(0, Vec(sum(k=2, N, x^k/(1-x^(2*k))))) \\ Seiichi Manyama, Jan 23 2021

Formula

From Antti Karttunen, Oct 04 2017: (Start)
a(n) = Sum_{d|n, dA000035(n).
a(n) = A001227(n) - A000035(n).
a(n) = A007814(A293214(n)) = A007814(A293216(n)).
(End)
G.f.: Sum_{k>=2} x^k/(1 - x^(2*k)). - Seiichi Manyama, Jan 23 2021
Sum_{k=1..n} a(k) ~ n*log(n)/2 + (gamma + log(2)/2 - 1)*n, where gamma is Euler's constant (A001620). - Amiram Eldar, Nov 26 2023

Extensions

Corrected and extended by Harvey P. Dale, Sep 28 2012