A092042 Decimal expansion of e^(1/4).
1, 2, 8, 4, 0, 2, 5, 4, 1, 6, 6, 8, 7, 7, 4, 1, 4, 8, 4, 0, 7, 3, 4, 2, 0, 5, 6, 8, 0, 6, 2, 4, 3, 6, 4, 5, 8, 3, 3, 6, 2, 8, 0, 8, 6, 5, 2, 8, 1, 4, 6, 3, 0, 8, 9, 2, 1, 7, 5, 0, 7, 2, 9, 6, 8, 7, 2, 2, 0, 7, 7, 6, 5, 8, 6, 7, 2, 3, 8, 0, 0, 2, 7, 5, 3, 3, 0, 6, 4, 1, 9, 4, 3, 9, 5, 5, 3, 5, 6, 8
Offset: 1
Examples
1.28402541668774148407342056806243645833....
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- D. M. Bătinetu-Giurgiu, Problem 4133, Crux Mathematicorum, Vol. 42, No. 4 (2016), p. 174; Solution to Problem 4133, ibid., Vol. 43, No. 4 (2017), pp. 167-169.
- Index entries for transcendental numbers
Programs
-
Maple
evalf(exp(1/4)); # Muniru A Asiru, Aug 16 2018
-
Mathematica
RealDigits[(E)^(1/4), 10, 100][[1]] (* Vincenzo Librandi, Mar 01 2013 *)
-
PARI
exp(1/4) \\ Michel Marcus, Jan 19 2017
Formula
e^(1/4) = 1/2*( 1 +(5 +(9 +(13 +...)/12)/8)/4 ) = 1 +(1 +(1 +(1 +...)/12)/8)/4. - Rok Cestnik, Jan 19 2017
Equals lim_{n->oo} ((2*n-1)!!)^(1/(2*n))/A057863(n)^(1/n^2) (Bătinetu-Giurgiu, 2016). - Amiram Eldar, Apr 10 2022
Equals (Integral_{x=1..oo} 1/(x*log(x)^log(log(x))) dx)/sqrt(Pi). - Kritsada Moomuang, Jun 03 2025
Comments