A092110 Primes p such that 2p+3 and 2p-3 are both prime.
5, 7, 13, 17, 43, 53, 67, 97, 113, 127, 137, 157, 167, 193, 223, 283, 487, 547, 563, 613, 617, 643, 647, 743, 773, 937, 1033, 1187, 1193, 1277, 1427, 1453, 1483, 1543, 1583, 1627, 1663, 1733, 1847, 2027, 2143, 2297, 2393, 2437, 2467, 2477, 2503, 2617, 2843
Offset: 1
Examples
From _K. D. Bajpai_, Sep 08 2020: (Start) 7 is a term because 2*7 + 3 = 17 and 2*7 - 3 = 11 are both prime. 13 is a term because 2*13 + 3 = 29 and 2*13 - 3 = 23 are both prime. (End)
Links
- K. D. Bajpai, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[p: p in PrimesUpTo(10000)|IsPrime(2*p-3) and IsPrime(2*p+3)] // Vincenzo Librandi, Nov 16 2010
-
Maple
select(p -> isprime(p) and isprime(2*p+3) and isprime(2*p-3), [seq(2*k+1, k=1..1000)]); # K. D. Bajpai, Sep 08 2020
-
Mathematica
Select[Prime@Range@1000,PrimeQ[2#-3]&&PrimeQ[2#+3]&] (* Vladimir Joseph Stephan Orlovsky, Apr 25 2011 *)
Comments