cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A136192 Primes p such that 2p-3 and 2p+3 are both prime (A092110), with last decimal of p being 7.

Original entry on oeis.org

7, 17, 67, 97, 127, 137, 157, 167, 487, 547, 617, 647, 937, 1187, 1277, 1427, 1627, 1847, 2027, 2297, 2437, 2467, 2477, 2617, 2857, 2927, 3137, 3457, 3727, 4007, 4057, 4157, 5167, 5417, 5657, 6247, 6257, 7027, 7477, 7867, 8467, 8737, 8747, 9127, 9227
Offset: 1

Views

Author

Carlos Alves, Dec 20 2007

Keywords

Comments

Except for p=5, the decimals in A092110 end in 3 or 7.
Theorem: If in the triple (2n-3,n,2n+3) all numbers are primes then n=5 or the decimal representation of n ends in 3 or 7. Proof: Consider Q=(2n-3)n(2n+3), by hypothesis factorized into primes. If n is prime, n=10k+r with r=1,3,7 or 9. We want to exclude r=1 and r=9. Case n=10k+1. Then Q=5(-1+6k+240k^2+800k^3) and 5 is a factor; thus 2n-3=5 or n=5 or 2n+1=5 : this means n=4 (not prime); or n=5 (included); or n=2 (impossible, because 2n-3=1). Case n=10k+9. Then Q=5(567+1926k+2160k^2+800k^3) and 5 is a factor; the arguments, for the previous case, also hold.

Crossrefs

Programs

  • Mathematica
    bpQ[n_]:=Last[IntegerDigits[n]]==7&&And@@PrimeQ[2n+{3,-3}]; Select[Prime[ Range[1200]],bpQ] (* Harvey P. Dale, Sep 25 2013 *)

Extensions

Definition clarified by Harvey P. Dale, Sep 25 2013

A136191 Primes p such that 2p-3 and 2p+3 are both prime (A092110), with last decimal being 3.

Original entry on oeis.org

13, 43, 53, 113, 193, 223, 283, 563, 613, 643, 743, 773, 1033, 1193, 1453, 1483, 1543, 1583, 1663, 1733, 2143, 2393, 2503, 2843, 3163, 3413, 3433, 3793, 3823, 4133, 4463, 4483, 4523, 4603, 4673, 4813, 5443, 5743, 5953, 6073, 6133, 6163, 6553, 6733, 6863
Offset: 1

Views

Author

Carlos Alves, Dec 20 2007

Keywords

Comments

Except for p=5, the decimals in A092110 end in 3 or 7.
Theorem: If in the triple (2n-3,n,2n+3) all numbers are primes then n=5 or the decimal representation of n ends in 3 or 7. Proof: Consider Q=(2n-3)n(2n+3), by hypothesis factorized into primes. If n is prime, n=10k+r with r=1,3,7 or 9. We want to exclude r=1 and r=9. Case n=10k+1. Then Q=5(-1+6k+240k^2+800k^3) and 5 is a factor; thus 2n-3=5 or n=5 or 2n+1=5 : this means n=4 (not prime); or n=5 (included); or n=2 (impossible, because 2n-3=1). Case n=10k+9. Then Q=5(567+1926k+2160k^2+800k^3) and 5 is a factor; the arguments, for the previous case, also hold.

Crossrefs

Intersection of A092110 and A017305.
Cf. A136192.

Programs

  • Mathematica
    Select[Prime[Range[1000]],AllTrue[{2#-3,2#+3},PrimeQ]&&IntegerDigits[#][[-1]]==3&] (* James C. McMahon, Apr 30 2025 *)
  • PARI
    isok(n)  = (n % 10 == 3) && isprime(n) && isprime(2*n-3) && isprime(2*n+3); \\ Michel Marcus, Sep 02 2013

A092109 Primes p such that p+3 is a semiprime.

Original entry on oeis.org

3, 7, 11, 19, 23, 31, 43, 59, 71, 79, 83, 103, 131, 139, 163, 191, 199, 211, 223, 251, 271, 311, 331, 359, 379, 383, 419, 443, 463, 479, 499, 523, 563, 619, 631, 659, 691, 743, 839, 859, 863, 883, 911, 919, 971, 1039, 1091, 1123, 1151, 1171, 1223, 1231, 1259
Offset: 1

Views

Author

Zak Seidov, Feb 21 2004

Keywords

Comments

Primes p such that p-3 is semiprime are in A089531; p and 2p+3 both prime, A023204; p, 2p-3 and 2p+3 prime, A092110.
Primes p such that (p+3)/2 is prime. All these primes are congruent to 3 mod 4. - Artur Jasinski, Oct 11 2008
Subsequence of A131426. - Zak Seidov, Mar 29 2015
Subsequence of A091305. - David Radcliffe, May 22 2022

Crossrefs

Programs

  • Magma
    IsSemiprime:=func< p | &+[ k[2]: k in Factorization(p)] eq 2 >; [p: p in PrimesUpTo(1300)| IsSemiprime(p+3)]; // Vincenzo Librandi, Feb 21 2014
    
  • Maple
    select(p -> isprime(p) and isprime((p+3)/2), [seq(2*k+1,k=1..1000)]); # Robert Israel, Mar 29 2015
  • Mathematica
    aa = {}; k = 3; Do[If[PrimeQ[(k + Prime[n])/2], AppendTo[aa, Prime[n]]], {n, 1, 100}]; aa (* Artur Jasinski, Oct 11 2008 *)
    Select[Prime[Range[300]],PrimeOmega[#+3]==2&] (* Harvey P. Dale, Feb 07 2018 *)
  • PARI
    is(n)=n%2 && isprime((n+3)/2) && isprime(n) \\ Charles R Greathouse IV, Jul 12 2016

Formula

a(n) = 2*A063908(n)-3 = 4*A115334(n)+3. - Artur Jasinski, Oct 11 2008

A283562 Primes of the form (p^2 - q^2) / 24 with primes p > q > 3.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 23, 37, 43, 47, 53, 67, 73, 97, 103, 107, 113, 127, 137, 157, 163, 167, 173, 193, 223, 233, 257, 263, 277, 283, 293, 313, 337, 347, 353, 373, 397, 433, 443, 467, 487, 523, 547, 563, 577, 593, 607, 613, 617, 643, 647, 653, 733, 743, 757, 773, 787, 797, 887, 907, 937, 947, 953, 977
Offset: 1

Views

Author

Altug Alkan and Thomas Ordowski, Mar 11 2017

Keywords

Comments

Note that p - q must be <= 12. Also note that there can be corresponding prime pairs (q, p) more than one way, i.e., (7, 13), (13, 17), (29, 31): (13^2 - 7^2)/24 = (17^2 - 13^2)/24 = (31^2 - 29^2)/24 = 5.
There are no terms of A045468 > 11.
Union of {2}, A006489, A060212, A092110, and A125272. - Robert Israel, Mar 13 2017

Examples

			3 is a term since (11^2 - 7^2)/24 = 3 and 3, 7, 11 are prime numbers.
		

Crossrefs

Programs

  • Maple
    select(r -> isprime(r) and ((isprime(3*r+2) and isprime(3*r-2))
      or (isprime(6*r+1) and isprime(6*r-1))
      or (isprime(2*r+3) and isprime(2*r-3))
    or (isprime(r+6) and isprime(r-6))), [2,seq(i,i=3..1000,2)]); # Robert Israel, Mar 13 2017
  • Mathematica
    ok[n_] := PrimeQ[n] && Block[{p, q, s = Reduce[p^2-q^2 == 24 n && p>3 && q>3, {p, q}, Integers]}, If[s === {}, False, Or @@ And @@@ PrimeQ[{p, q} /. List@ ToRules@s]]]; Select[Range@1000, ok] (* Giovanni Resta, Mar 11 2017 *)
  • PARI
    isA124865(n) = if(n%24, isprimepower(n+4)==2 || isprimepower(n+9)==2, fordiv(n/4, d, if(isprime(n/d/4+d) && isprime(n/d/4-d), return(1))); 0)
    lista(nn) = forprime(p=2, nn, if(isA124865(24*p), print1(p", ")))

Formula

For n > 5, a(n) == {3,7} mod 10.

A172258 Primes p such that exactly one of the numbers 2p-3 and 2p+3 is prime.

Original entry on oeis.org

2, 3, 11, 19, 23, 29, 31, 37, 41, 47, 71, 73, 83, 89, 101, 107, 139, 173, 181, 191, 197, 199, 211, 227, 229, 233, 241, 251, 263, 269, 277, 307, 311, 317, 331, 337, 347, 349, 353, 373, 379, 383, 397, 409, 421, 431, 433, 439, 443, 457, 461, 463, 467, 503, 509
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jan 30 2010

Keywords

Examples

			a(1)=2 because 2*2-3=1 (nonprime) and 2*2+3=7 (prime);
a(2)=29 because 2*29-3=55 (nonprime) and 2*29+3=61 (prime).
		

Crossrefs

Programs

  • Maple
    a := proc (n): if isprime(n) = true and isprime(2*n-3) = true and isprime(2*n+3) = false then n elif isprime(n) = true and isprime(2*n-3) = false and isprime(2*n+3) = true then n else end if end proc: seq(a(n), n = 1 .. 700); # Emeric Deutsch, Feb 15 2010
  • Mathematica
    Select[Prime[Range[100]],Total[Boole[PrimeQ[2#+{3,-3}]]]==1&] (* Harvey P. Dale, Mar 27 2021 *)

Extensions

Definition edited by Emeric Deutsch, Feb 15 2010
Corrected and extended by Emeric Deutsch, Feb 15 2010
Showing 1-5 of 5 results.