cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A092117 Numbers n such that the concatenation 2n3n5n7n11n13 is prime.

Original entry on oeis.org

10, 43, 51, 55, 58, 60, 136, 171, 204, 213, 214, 222, 270, 288, 309, 334, 339, 364, 366, 376, 414, 423, 460, 477, 492, 501, 502, 507, 513, 519, 565, 585, 586, 597, 621, 649, 726, 729, 787, 852, 861, 870, 903, 906, 915, 933, 946, 981, 988, 1005, 1038, 1071
Offset: 1

Views

Author

Farideh Firoozbakht, Jun 15 2003

Keywords

Comments

This concatenation is fp(6, n) as defined in A083677.

Examples

			10 is in the sequence because 210310510710111013 is prime.
		

Crossrefs

Programs

  • Mathematica
    v={};Do[If[PrimeQ[FromDigits[Join[{2}, IntegerDigits[n], {3}, IntegerDigits[n], {5}, IntegerDigits[n], {7}, IntegerDigits[n], {1, 1}, IntegerDigits[n], {1, 3}]]], v=Append[v, n]], {n, 1400}];v
    fp6Q[n_] := PrimeQ[ FromDigits[ Flatten[ IntegerDigits /@ Insert[{2, 3, 5, 7, 11, 13}, n, {{2}, {3}, {4}, {5}, {6}}]]]]; Select[ Range[1100], fp6Q[ # ] &] (* Robert G. Wilson v, Dec 11 2004 *)
    Select[Range[1100],PrimeQ[FromDigits[Flatten[IntegerDigits/@Riffle[{2,3,5,7,11,13}, #]]]]&] (* Harvey P. Dale, Mar 21 2013 *)

Extensions

Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, May 27 2007

A083969 Numbers n such that 2.n.3.n.5.n.7.n.11 is prime (dot means concatenation).

Original entry on oeis.org

4, 18, 33, 42, 43, 57, 73, 76, 78, 87, 91, 93, 97, 102, 112, 114, 120, 141, 151, 177, 186, 193, 196, 219, 261, 267, 276, 280, 300, 307, 318, 322, 342, 352, 364, 366, 402, 435, 438, 445, 457, 462, 468, 484, 511, 580, 582, 633, 646, 651, 679, 706, 745, 774, 783
Offset: 1

Views

Author

Farideh Firoozbakht, Jun 19 2003

Keywords

Examples

			2.4.3.4.5.4.7.4.11 = 2434547411, which is prime. Hence 4 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    v={};Do[If[PrimeQ[FromDigits[Join[{2}, IntegerDigits[n], {3}, IntegerDigits[n], {5}, IntegerDigits[n], {7}, IntegerDigits[n], {1, 1}]]], v=Append[v, n]], {n, 1000}];v
    Select[Range[660], PrimeQ[FromDigits[Join[{2}, IntegerDigits[ # ], {3}, IntegerDigits[ # ], {5}, IntegerDigits[ # ], {7}, IntegerDigits[ # ], {1, 1}]]] &] (* Stefan Steinerberger, Jun 28 2007 *)
  • Python
    from sympy import isprime
    def aupton(terms):
      n, alst = 1, []
      while len(alst) < terms:
        s = str(n)
        t = int('2'+s+'3'+s+'5'+s+'7'+s+'11')
        if isprime(t): alst.append(n)
        n += 1
      return alst
    print(aupton(55)) # Michael S. Branicky, Apr 18 2021

Extensions

Edited by Stefan Steinerberger, Jun 28 2007
Edited by N. J. A. Sloane, Sep 18 2008 at the suggestion of R. J. Mathar
Showing 1-2 of 2 results.