A084036 Duplicate of A092117.
10, 43, 51, 55, 58, 60, 136, 171, 204, 213, 214, 222, 270, 288, 309, 334, 339, 364, 366
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
8 and 21 are in the sequence because 283 and 2213 are primes.
v={};Do[If[PrimeQ[FromDigits[Join[{2},IntegerDigits[n],{3}]]], v=Append[v,n]],{n, 260}];v (* Farideh Firoozbakht, Jun 15 2003 *) Select[Range[210],PrimeQ[FromDigits[Join[{2},IntegerDigits[#],{3}]]]&] (* Harvey P. Dale, May 02 2012 *)
for( n=1,300, isprime(eval(Str(2,n,3))) & print1(n",")) \\ M. F. Hasler, Mar 18 2008
a(4) = 1 because 2030507 is composite and 2131517 is prime.
fpkQ[k_, n_] := PrimeQ[ FromDigits[ Flatten[ IntegerDigits /@ Insert[ Table[ Prime[i], {i, k}], n, Table[{i}, {i, 2, k}]]]]]; a[1] = 0; a[3] = a[10] = a[16] = a[28] = a[34] = a[40] = a[46] = a[52] = a[70] = a[76] = a[82] = a[88] = a[97] = -1; a[n_] := Block[{k = 0}, While[ fpkQ[n, k] != True, k++ ]; k]; Table[ a[n], {n, 70}] (* Robert G. Wilson v, Dec 11 2004 *)
8 and 21 are in the sequence because 2838587 and 2213215217 are primes. 16 is in the sequence because 2163165167 is prime.
filter:= proc(n) local m; m:= ilog10(n)+1; isprime(n*(10 + 10^(m+2)+ 10^(2*m+3))+7+5*10^(m+1)+3*10^(2*m+2)+2*10^(3*m+3)) end proc: select(filter, [$1..2000]); # Robert Israel, Nov 12 2019
v={};Do[If[PrimeQ[FromDigits[Join[{2},IntegerDigits[n],{3}, IntegerDigits[n],{5},IntegerDigits[n],{7}]]],v=Append[v,n]], {n,1300}];v Select[Range[1300],PrimeQ[FromDigits[Flatten[IntegerDigits/@ Riffle[ {2,3,5,7}, Table[#,{3}]]]]]&](* Harvey P. Dale, Nov 24 2015 *)
is(n)=isprime(eval(Str(2,n,3,n,5,n,7))) \\ Charles R Greathouse IV, May 15 2013
2.4.3.4.5.4.7.4.11 = 2434547411, which is prime. Hence 4 is in the sequence.
v={};Do[If[PrimeQ[FromDigits[Join[{2}, IntegerDigits[n], {3}, IntegerDigits[n], {5}, IntegerDigits[n], {7}, IntegerDigits[n], {1, 1}]]], v=Append[v, n]], {n, 1000}];v Select[Range[660], PrimeQ[FromDigits[Join[{2}, IntegerDigits[ # ], {3}, IntegerDigits[ # ], {5}, IntegerDigits[ # ], {7}, IntegerDigits[ # ], {1, 1}]]] &] (* Stefan Steinerberger, Jun 28 2007 *)
from sympy import isprime def aupton(terms): n, alst = 1, [] while len(alst) < terms: s = str(n) t = int('2'+s+'3'+s+'5'+s+'7'+s+'11') if isprime(t): alst.append(n) n += 1 return alst print(aupton(55)) # Michael S. Branicky, Apr 18 2021
Comments