cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A092115 Duplicate of A083966.

Original entry on oeis.org

1, 6, 8, 9, 16, 17, 18, 21, 23, 24, 29, 32, 39, 64, 70, 78, 84, 85, 98, 1000, 1005, 1013
Offset: 1

Views

Author

Keywords

A032711 Numbers k such that k prefixed by '2' and followed by '3' is prime.

Original entry on oeis.org

2, 3, 6, 8, 9, 11, 14, 15, 20, 21, 24, 27, 29, 33, 38, 39, 42, 47, 50, 54, 59, 63, 66, 68, 69, 71, 75, 80, 83, 84, 90, 95, 96, 101, 102, 114, 116, 119, 128, 131, 132, 138, 143, 149, 150, 152, 156, 161, 167, 168, 171, 177, 180, 186, 189, 194, 200, 201, 206, 207, 209
Offset: 1

Views

Author

Patrick De Geest, May 15 1998

Keywords

Comments

This sequence is infinite, a consequence of the Prime Number Theorem in arithmetic progressions. - Charles R Greathouse IV, Sep 26 2012

Examples

			8 and 21 are in the sequence because 283 and 2213 are primes.
		

Crossrefs

Programs

  • Mathematica
    v={};Do[If[PrimeQ[FromDigits[Join[{2},IntegerDigits[n],{3}]]], v=Append[v,n]],{n, 260}];v (* Farideh Firoozbakht, Jun 15 2003 *)
    Select[Range[210],PrimeQ[FromDigits[Join[{2},IntegerDigits[#],{3}]]]&] (* Harvey P. Dale, May 02 2012 *)
  • PARI
    for( n=1,300, isprime(eval(Str(2,n,3))) & print1(n",")) \\ M. F. Hasler, Mar 18 2008

Extensions

Merged with data from duplicate entry A092114. - M. F. Hasler, Mar 18 2008

A083677 Define f(n, k) to be the concatenation of the first n primes, with n-1 k's inserted between the primes. Then a(n) is the smallest k >= 0 such that f(n, k) is prime, or -1 if no such prime exists.

Original entry on oeis.org

0, 2, -1, 1, 4, 10, 38, 20, 0, -1, 163, 46, 8, 53, 0, -1, 74, 5, 8, 5, 180, 4, 280, 191, 0, 337, 191, -1, 105, 88, 19, 28, 111, -1, 525, 13, 24, 102, 159, -1, 288, 142, 31, 743, 81, -1, 183, 202, 100, 96, 380, -1, 1227, 5, 113, 123, 20, 23, 0, 48, 148, 438, 52, 144, 128, 297, 206
Offset: 1

Views

Author

Farideh Firoozbakht, Jun 15 2003

Keywords

Comments

a(3) = -1 because f(3, k) is always a multiple of 5. For any n such that n = 1 (mod 3) and A007504(n) = 0 (mod 3), a(n) = -1 because f(n, k) is always a multiple of 3. It is my conjecture that for all other n, -1 < a(n) < n*p(n). I've checked for all n < 270.

Examples

			a(4) = 1 because 2030507 is composite and 2131517 is prime.
		

Crossrefs

A082549 gives the n such that a(n) = 0. A083684 gives the n such that a(n)=-1.

Programs

  • Mathematica
    fpkQ[k_, n_] := PrimeQ[ FromDigits[ Flatten[ IntegerDigits /@ Insert[ Table[ Prime[i], {i, k}], n, Table[{i}, {i, 2, k}]]]]]; a[1] = 0; a[3] = a[10] = a[16] = a[28] = a[34] = a[40] = a[46] = a[52] = a[70] = a[76] = a[82] = a[88] = a[97] = -1; a[n_] := Block[{k = 0}, While[ fpkQ[n, k] != True, k++ ]; k]; Table[ a[n], {n, 70}] (* Robert G. Wilson v, Dec 11 2004 *)

Extensions

Edited and extended by Robert G. Wilson v, Dec 11 2004

A092117 Numbers n such that the concatenation 2n3n5n7n11n13 is prime.

Original entry on oeis.org

10, 43, 51, 55, 58, 60, 136, 171, 204, 213, 214, 222, 270, 288, 309, 334, 339, 364, 366, 376, 414, 423, 460, 477, 492, 501, 502, 507, 513, 519, 565, 585, 586, 597, 621, 649, 726, 729, 787, 852, 861, 870, 903, 906, 915, 933, 946, 981, 988, 1005, 1038, 1071
Offset: 1

Views

Author

Farideh Firoozbakht, Jun 15 2003

Keywords

Comments

This concatenation is fp(6, n) as defined in A083677.

Examples

			10 is in the sequence because 210310510710111013 is prime.
		

Crossrefs

Programs

  • Mathematica
    v={};Do[If[PrimeQ[FromDigits[Join[{2}, IntegerDigits[n], {3}, IntegerDigits[n], {5}, IntegerDigits[n], {7}, IntegerDigits[n], {1, 1}, IntegerDigits[n], {1, 3}]]], v=Append[v, n]], {n, 1400}];v
    fp6Q[n_] := PrimeQ[ FromDigits[ Flatten[ IntegerDigits /@ Insert[{2, 3, 5, 7, 11, 13}, n, {{2}, {3}, {4}, {5}, {6}}]]]]; Select[ Range[1100], fp6Q[ # ] &] (* Robert G. Wilson v, Dec 11 2004 *)
    Select[Range[1100],PrimeQ[FromDigits[Flatten[IntegerDigits/@Riffle[{2,3,5,7,11,13}, #]]]]&] (* Harvey P. Dale, Mar 21 2013 *)

Extensions

Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, May 27 2007
Showing 1-4 of 4 results.