A092115 Duplicate of A083966.
1, 6, 8, 9, 16, 17, 18, 21, 23, 24, 29, 32, 39, 64, 70, 78, 84, 85, 98, 1000, 1005, 1013
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
8 and 21 are in the sequence because 283 and 2213 are primes.
v={};Do[If[PrimeQ[FromDigits[Join[{2},IntegerDigits[n],{3}]]], v=Append[v,n]],{n, 260}];v (* Farideh Firoozbakht, Jun 15 2003 *) Select[Range[210],PrimeQ[FromDigits[Join[{2},IntegerDigits[#],{3}]]]&] (* Harvey P. Dale, May 02 2012 *)
for( n=1,300, isprime(eval(Str(2,n,3))) & print1(n",")) \\ M. F. Hasler, Mar 18 2008
a(4) = 1 because 2030507 is composite and 2131517 is prime.
fpkQ[k_, n_] := PrimeQ[ FromDigits[ Flatten[ IntegerDigits /@ Insert[ Table[ Prime[i], {i, k}], n, Table[{i}, {i, 2, k}]]]]]; a[1] = 0; a[3] = a[10] = a[16] = a[28] = a[34] = a[40] = a[46] = a[52] = a[70] = a[76] = a[82] = a[88] = a[97] = -1; a[n_] := Block[{k = 0}, While[ fpkQ[n, k] != True, k++ ]; k]; Table[ a[n], {n, 70}] (* Robert G. Wilson v, Dec 11 2004 *)
10 is in the sequence because 210310510710111013 is prime.
v={};Do[If[PrimeQ[FromDigits[Join[{2}, IntegerDigits[n], {3}, IntegerDigits[n], {5}, IntegerDigits[n], {7}, IntegerDigits[n], {1, 1}, IntegerDigits[n], {1, 3}]]], v=Append[v, n]], {n, 1400}];v fp6Q[n_] := PrimeQ[ FromDigits[ Flatten[ IntegerDigits /@ Insert[{2, 3, 5, 7, 11, 13}, n, {{2}, {3}, {4}, {5}, {6}}]]]]; Select[ Range[1100], fp6Q[ # ] &] (* Robert G. Wilson v, Dec 11 2004 *) Select[Range[1100],PrimeQ[FromDigits[Flatten[IntegerDigits/@Riffle[{2,3,5,7,11,13}, #]]]]&] (* Harvey P. Dale, Mar 21 2013 *)
Comments