A092261 Sum of unitary, squarefree divisors of n, including 1.
1, 3, 4, 1, 6, 12, 8, 1, 1, 18, 12, 4, 14, 24, 24, 1, 18, 3, 20, 6, 32, 36, 24, 4, 1, 42, 1, 8, 30, 72, 32, 1, 48, 54, 48, 1, 38, 60, 56, 6, 42, 96, 44, 12, 6, 72, 48, 4, 1, 3, 72, 14, 54, 3, 72, 8, 80, 90, 60, 24, 62, 96, 8, 1, 84, 144, 68, 18, 96, 144, 72, 1, 74, 114, 4, 20, 96, 168, 80
Offset: 1
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Eckford Cohen, Arithmetical functions associated with the unitary divisors of an integer, Math. Zeitschr. 74 (1960) 66-80, sequence sigma'(n).
- Steven R. Finch, Unitarism and Infinitarism, February 25, 2004. [Cached copy, with permission of the author]
Crossrefs
Programs
-
Mathematica
Table[Plus @@ Select[Divisors@ n, Max @@ Last /@ FactorInteger@ # == 1 && GCD[#, n/#] == 1 &], {n, 1, 79}] (* Michael De Vlieger, Mar 08 2015 *) f[p_, e_] := If[e==1, p+1, 1]; a[1]=1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 79] (* Amiram Eldar, Mar 01 2019 *)
-
PARI
a(n) = sumdiv(n, d, d*issquarefree(d)*(gcd(d, n/d) == 1)); \\ Michel Marcus, Mar 06 2015
-
PARI
for(n=1, 100, print1(direuler(p=2, n, (1 + p^2*X^3 - p*X^2 - p^2*X^2)/(1-X)/(1-p*X))[n], ", ")) \\ Vaclav Kotesovec, Aug 20 2021
-
Scheme
;; This implementation utilizes the memoization-macro definec for which an implementation is available at http://oeis.org/wiki/Memoization#Scheme ;; The other functions, A020639, A067029 and A028234 can be found under the respective entries, and should likewise defined with definec: (definec (A092261 n) (if (= 1 n) 1 (* (+ 1 (if (> (A067029 n) 1) 0 (A020639 n))) (A092261 (A028234 n))))) ;; Antti Karttunen, Nov 25 2017
Formula
Multiplicative with a(p) = p+1 and a(p^e) = 1 for e > 1. - Vladeta Jovovic, Feb 22 2004
From Álvar Ibeas, Mar 06 2015: (Start)
Dirichlet g.f.: zeta(s) * Product_{p prime} (1 + p^(1-s) - p^(1-2s)).
(End)
From Antti Karttunen, Nov 25 2017: (Start)
a(n) = A048250(n) / A295295(n) = A048250(n) / A048250(A057521(n)), where A057521(n) = A064549(A003557(n)).
(End)
Lim_{n->oo} (1/n) * Sum_{k=1..n} a(k)/k = Product_{p prime}(1 - 1/(p^2*(p+1))) = 0.881513... (A065465). - Amiram Eldar, Jun 10 2020
Dirichlet g.f.: zeta(s) * zeta(s-1) * Product_{p prime} (1 + p^(2-3*s) - p^(1-2*s) - p^(2-2*s)). - Vaclav Kotesovec, Aug 20 2021
a(n) = Sum_{d|n, gcd(d,n/d)=1} d * mu(d)^2. - Wesley Ivan Hurt, May 26 2023
Comments