cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A379812 a(n) = sigma_1(n) * sigma_2(n).

Original entry on oeis.org

1, 15, 40, 147, 156, 600, 400, 1275, 1183, 2340, 1464, 5880, 2380, 6000, 6240, 10571, 5220, 17745, 7240, 22932, 16000, 21960, 12720, 51000, 20181, 35700, 32800, 58800, 25260, 93600, 30784, 85995, 58560, 78300, 62400, 173901, 52060, 108600, 95200, 198900, 70644
Offset: 1

Views

Author

Amiram Eldar, Jan 03 2025

Keywords

References

  • Srinivasa Ramanujan, Collected papers, edited by G. H. Hardy et al., Chelsea, 1962, chapter 17, pp. 133-135.

Crossrefs

Programs

  • Mathematica
    a[n_] := Times @@ DivisorSigma[{1, 2}, n]; Array[a, 50]
  • PARI
    a(n) = {my(f = factor(n)); sigma(f) * sigma(f, 2);}

Formula

a(n) = A000203(n) * A001157(n).
Multiplicative with a(p^e) = (p^(e+1)-1) * (p^(2*e+2)-1) / ((p-1) * (p^2-1)).
Dirichlet g.f.: zeta(s) * zeta(s-1) * zeta(s-2) * zeta(s-3) / zeta(2*s-3).
In general, Dirichlet g.f. of sigma_i(n) * sigma_j(n): zeta(s) * zeta(s-i) * zeta(s-j) * zeta(s-i-j) / zeta(2*s-i-j) (Ramanujan, 1916).
Sum_{k=1..n} a(k) ~ c * n^4 / 4, where c = zeta(2) * zeta(3) * zeta(4) / zeta(5) = zeta(3) * Pi^6 / (540*zeta(5)) = 2.06386841111121962734... .
In general, Sum_{k=1..n} sigma_i(k) * sigma_j(k) ~ c(i,j) * n^(i+j+1) / (i+j+1), for i, j >= 1, where c(i,j) = zeta(i+1) * zeta(j+1) * zeta(i+j+1) / zeta(i+j+2).
G.f.: Sum_{k>=1} Sum_{l>=1} k*l^2*x^lcm(k, l)/(1 - x^lcm(k, l)). - Miles Wilson, Jul 10 2025

A299019 Expansion of Product_{k>=1} (1 - x^k)^(k+1).

Original entry on oeis.org

1, -2, -2, 2, 3, 6, -1, -2, -10, -14, -7, -2, 11, 26, 43, 30, 28, -6, -40, -92, -128, -132, -115, -48, 54, 200, 339, 484, 499, 476, 274, -32, -501, -998, -1539, -1924, -2042, -1838, -1139, 12, 1664, 3540, 5588, 7258, 8392, 8230, 6812, 3480, -1472, -8150, -15737, -23670, -30478
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 11 2018

Keywords

Comments

Convolution of A010815 and A073592.
Convolution inverse of A005380.

Crossrefs

Programs

  • Mathematica
    nmax = 52; CoefficientList[Series[Product[(1 - x^k)^(k + 1), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 52; CoefficientList[Series[Exp[-Sum[(DivisorSigma[1, k] + DivisorSigma[2, k]) x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, -Sum[Sum[d (d + 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 52}]

Formula

G.f.: exp(-Sum_{k>=1} (sigma_1(k) + sigma_2(k))*x^k/k).

A326826 a(n) = (1/2) * Sum_{d|n} (sigma_1(d) + sigma_2(d)), where sigma_1 = A000203 and sigma_2 = A001157.

Original entry on oeis.org

1, 5, 8, 19, 17, 43, 30, 69, 60, 95, 68, 176, 93, 171, 166, 255, 155, 342, 192, 403, 303, 395, 278, 681, 358, 543, 490, 738, 437, 961, 498, 969, 709, 911, 720, 1476, 705, 1131, 978, 1603, 863, 1773, 948, 1732, 1440, 1643, 1130, 2634, 1284, 2110, 1648, 2391, 1433, 2882, 1706
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 20 2019

Keywords

Comments

Inverse Moebius transform applied twice to triangular numbers (A000217).

Crossrefs

Programs

  • Magma
    [(1/2)*&+[DivisorSigma(1,d)+DivisorSigma(2,d):d in Divisors(n)]:n in [1..55]]; // Marius A. Burtea, Oct 20 2019
  • Maple
    with(numtheory):
    a:= n-> add(d*(d+1)*tau(n/d), d=divisors(n))/2:
    seq(a(n), n=1..60);  # Alois P. Heinz, Oct 20 2019
  • Mathematica
    Table[1/2 Sum[DivisorSigma[1, d] + DivisorSigma[2, d], {d, Divisors[n]}], {n, 1, 55}]
    Table[1/2 Sum[d (d + 1) DivisorSigma[0, n/d], {d, Divisors[n]}], {n, 1, 55}]
    nmax = 55; CoefficientList[Series[Sum[Sum[x^(i j)/(1 - x^(i j))^3, {j, 1, nmax}], {i, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = sumdiv(n, d, sigma(d)+sigma(d, 2))/2; \\ Michel Marcus, Oct 20 2019
    

Formula

G.f.: Sum_{i>=1} Sum_{j>=1} x^(i*j) / (1 - x^(i*j))^3.
G.f.: (1/2) * Sum_{i>=1} Sum_{j>=1} j * (j + 1) * x^(i*j) / (1 - x^(i*j)).
G.f.: (1/2) * Sum_{k>=1} (sigma_1(k) + sigma_2(k)) * x^k / (1 - x^k).
Dirichlet g.f.: zeta(s)^2 * (zeta(s-1) + zeta(s-2)) / 2.
a(n) = (1/2) * Sum_{d|n} d * (d + 1) * tau(n/d), where tau = A000005.
a(n) = Sum_{d|n} A007437(d).
Sum_{k=1..n} a(k) ~ zeta(3)^2 * n^3 / 6. - Vaclav Kotesovec, Dec 11 2021
Showing 1-3 of 3 results.