A092366 Coefficient of x^n in expansion of (1+n*x+n*x^2)^n.
1, 1, 8, 81, 1120, 19375, 400896, 9630411, 262955008, 8032730715, 271175200000, 10017828457483, 401738097475584, 17371952344599385, 805429080795852800, 39844314853048828125, 2094272851244149112832, 116526044312704751752451
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..381 (terms 1..100 from Vincenzo Librandi)
Programs
-
Magma
P
:=PolynomialRing(Integers()); [ Coefficients((1+n*x+n*x^2)^n)[n+1]: n in [1..22] ]; // Klaus Brockhaus, Mar 03 2011 -
Maple
seq(n!*coeff(series(exp(n*x)*BesselI(0,2*sqrt(n)*x),x,n+1),x,n),n=1..17);
-
Mathematica
Table[Sum[n^k*Binomial[n,k]*Binomial[k,n-k],{k,Floor[n/2],n}],{n,1,20}] (* Vaclav Kotesovec, Apr 17 2014 *) Table[If[n == 0, 1, n^(n/2) GegenbauerC[n, -n, -Sqrt[n]/2]], {n, 0, 12}] (* Emanuele Munarini, Oct 20 2016 *)
-
Maxima
a(n):=coeff(expand((1+n*x+n*x^2)^n), x, n); makelist(a(n), n, 1, 12); /* Emanuele Munarini, Mar 02 2011 */
-
PARI
q(n)=(1+n*x+n*x^2)^n; for(i=0,20,print1(","polcoeff(q(i),i)))
Formula
a(n) = n^(n/2)*GegenbauerPoly(n,-n,-sqrt(n)/2). - Emanuele Munarini, Oct 20 2016
Sum_{k=floor(n/2)..n} n^k*binomial(n, k)*binomial(k, n-k). - Vladeta Jovovic, Mar 22 2004
a(n) ~ n^(n-1/4) * exp(2*sqrt(n)-2) / (2*sqrt(Pi)). - Vaclav Kotesovec, Apr 17 2014
Extensions
a(0)=1 prepended by Seiichi Manyama, May 01 2019
Comments