A092392 Triangle read by rows: T(n,k) = C(2*n - k,n), 0 <= k <= n.
1, 2, 1, 6, 3, 1, 20, 10, 4, 1, 70, 35, 15, 5, 1, 252, 126, 56, 21, 6, 1, 924, 462, 210, 84, 28, 7, 1, 3432, 1716, 792, 330, 120, 36, 8, 1, 12870, 6435, 3003, 1287, 495, 165, 45, 9, 1, 48620, 24310, 11440, 5005, 2002, 715, 220, 55, 10, 1, 184756, 92378, 43758, 19448, 8008, 3003, 1001, 286, 66, 11, 1
Offset: 0
Examples
From _Paul Barry_, Oct 14 2009: (Start) Triangle begins 1, 2, 1, 6, 3, 1, 20, 10, 4, 1, 70, 35, 15, 5, 1, 252, 126, 56, 21, 6, 1, 924, 462, 210, 84, 28, 7, 1, 3432, 1716, 792, 330, 120, 36, 8, 1 Production array is 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1 (End) As a square array = A100100 * square Pascal matrix: /1 1 1 1 ...\ / 1 \/1 1 1 1 ...\ |2 3 4 5 ...| | 1 1 ||1 2 3 4 ...| |6 10 15 21 ...| = | 3 2 1 ||1 3 6 10 ...| |20 35 56 84 ...| |10 6 3 1 ||1 4 10 20 ...| |70 ... | |35 ... ||1 ... | - _Peter Bala_, Nov 03 2015
Links
- Reinhard Zumkeller, Rows n=0..149 of triangle, flattened
- P. Bala, Notes on generalized Riordan arrays
- P. Barry, On the Central Coefficients of Riordan Matrices, Journal of Integer Sequences, 16 (2013), #13.5.1.
- Paul Barry, Jacobsthal Decompositions of Pascal's Triangle, Ternary Trees, and Alternating Sign Matrices, Journal of Integer Sequences, 19, 2016, #16.3.5.
- Ik-Pyo Kim, Michael J. Tsatsomeros, Inverse Relations in Shapiro's Open Questions, arXiv:1707.06590 [math.CO], 2017. See p. 7.
Crossrefs
Programs
-
Haskell
a092392 n k = a092392_tabl !! (n-1) !! (k-1) a092392_row n = a092392_tabl !! (n-1) a092392_tabl = map reverse a046899_tabl -- Reinhard Zumkeller, Jul 27 2012
-
Magma
/* As a triangle */ [[Binomial(2*n-k, n): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Nov 22 2017
-
Maple
A092392 := proc(n,k) binomial(2*n-k,n-k) ; end proc: seq(seq(A092392(n,k),k=0..n),n=0..10) ; # R. J. Mathar, Feb 06 2015
-
Mathematica
Table[Binomial[2 n - k, n], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Mar 19 2016 *)
-
Maxima
C(x):=(1-sqrt(1-4*x))/2; A(x,y):=(1/sqrt(1-4*x))/(1-y*C(x)); taylor(A(x,y),y,0,10,x,0,10); /* Vladimir Kruchinin, Mar 19 2016 */
-
PARI
for(n=0,10, for(k=0,n, print1(binomial(2*n - k,n), ", "))) \\ G. C. Greubel, Nov 22 2017
Formula
As a number triangle, this is T(n, k) = if(k <= n, C(2*n - k, n), 0). Its row sums are C(2*n + 1, n + 1) = A001700. Its diagonal sums are A176287. - Paul Barry, Apr 23 2005
G.f. of column k: 2^k/[sqrt(1 - 4*x)*(1 + sqrt(1 - 4*x))^k].
As a number triangle, this is the Riordan array (1/sqrt(1 - 4*x), x*c(x)), c(x) the g.f. of A000108. - Paul Barry, Jun 24 2005
G.f.: A(x,y)=1/sqrt(1 - 4*x)/(1-y*x*C(x)), where C(x) is g.f. of Catalan numbers. - Vladimir Kruchinin, Mar 19 2016
Extensions
Diagonal sums comment corrected by Paul Barry, Apr 14 2010
Offset corrected by R. J. Mathar, Feb 08 2013
Comments