cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A226602 Number of ordered triples (i,j,k) with i*j*k = n, i,j,k >= 0 and gcd(i,j,k) <= 1.

Original entry on oeis.org

1, 1, 3, 3, 6, 3, 9, 3, 9, 6, 9, 3, 18, 3, 9, 9, 12, 3, 18, 3, 18, 9, 9, 3, 27, 6, 9, 9, 18, 3, 27, 3, 15, 9, 9, 9, 36, 3, 9, 9, 27, 3, 27, 3, 18, 18, 9, 3, 36, 6, 18, 9, 18, 3, 27, 9, 27, 9, 9, 3, 54, 3, 9, 18, 18, 9, 27, 3, 18, 9, 27, 3, 54, 3, 9, 18, 18
Offset: 0

Views

Author

Robert Price, Jun 13 2013

Keywords

Comments

Note that gcd(0,m) = m for any m.
a(n) is the number of cubefree divisors summed over the divisors of n. In other words, a(n) = Sum_{d|n} A073184(d). - Geoffrey Critzer, Mar 20 2015

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n, t, g) option remember; `if`(t=0,
          `if`(igcd(n, g)=1, 1, 0), add(b(n/d, t-1,
          igcd(g, d)), d=divisors(n)))
        end:
    a:= n-> `if`(n=0, 1, b(n, 2, 0)):
    seq(a(n), n=0..100);  # Alois P. Heinz, Mar 20 2015
  • Mathematica
    f[n_] := Length[Complement[Union[Flatten[Table[If[i*j*k == n && GCD[i, j, k] <= 1, {i, j, k}], {i, 0,n}, {j, 0, n}, {k, 0, n}], 2]], {Null}]]; Table[f[n], {n, 0, 100}]
    a[0] = a[1] = 1; a[n_] := Times @@ (3 * Last[#] & /@ FactorInteger[n]); Array[a, 100, 0] (* Amiram Eldar, Sep 14 2020 *)
  • Python
    from math import prod
    from sympy import factorint
    def A226602(n): return prod(3*e for e in factorint(n).values()) if n else 1 # Chai Wah Wu, Dec 26 2022

Formula

From Geoffrey Critzer, Mar 20 2015: (Start)
If n = p_1^e_1*p_2^e_2*...*p_r^e_r then a(n) = Product_{i=1..r} 3*e_i.
Dirichlet g.f.: zeta(s)^3/zeta(3*s). (End)
From Werner Schulte, May 13 2018: (Start)
Multiplicative with a(p^e) = 3*e, p prime and e>0.
Dirichlet inverse b(n), n>0, is multiplicative with b(1) = 1, and for p prime and e>0: b(p^e)=0 if e mod 3 = 0 otherwise b(p^e)=3*(-1)^(e mod 3).
Dirichlet convolution with A007427(n) yields A212793(n).
Dirichlet convolution with A008836(n) yields A092520(n).
Equals Dirichlet convolution of A034444(n) and A056624(n).
Equals Dirichlet convolution of A000005(n) and A212793(n). (End)
Sum_{k=1..n} a(k) ~ n/(2*Zeta(3)) * (log(n)^2 + 2*log(n) * (-1 + 3*gamma - 3*Zeta'(3)/Zeta(3)) + 2 + 6*gamma^2 - 6*sg1 + 6*Zeta'(3)/Zeta(3) + 18*Zeta'(3)^2/Zeta(3)^2 - 6*gamma*(1 + 3*Zeta'(3)/Zeta(3)) - 9*Zeta''(3)/Zeta(3)), where gamma is the Euler-Mascheroni constant A001620 and sg1 is the first Stieltjes constant (see A082633). - Vaclav Kotesovec, Feb 07 2019
a(n) = A005361(n) * A074816(n). - Vaclav Kotesovec, Feb 27 2023

A318498 Denominators of the sequence whose Dirichlet convolution with itself yields A061389, number of (1+phi)-divisors of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 8, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 8, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 8, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 16, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 8, 8, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 8, 1, 2, 2, 4, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Aug 30 2018

Keywords

Comments

The sequence seems to give the denominators of a few other similarly constructed rational valued sequences obtained as "Dirichlet Square Roots" (of possibly A092520 and A293443).

Crossrefs

Cf. A061389, A318497 (numerators), A318499.
Cf. also A299150, A046644.

Programs

  • PARI
    up_to = 65537;
    A061389(n) = factorback(apply(e -> (1+eulerphi(e)),factor(n)[,2]));
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA317937.
    v318497_98 = DirSqrt(vector(up_to, n, A061389(n)));
    A318497(n) = numerator(v318497_98[n]);
    A318498(n) = denominator(v318497_98[n]);

Formula

a(n) = denominator of f(n), where f(1) = 1, f(n) = (1/2) * (A061389(n) - Sum_{d|n, d>1, d 1.
a(n) = 2^A318499(n).

A303915 a(n) = lambda(n)*E(n), where lambda(n) = A008836(n) and E(n) = A005361(n).

Original entry on oeis.org

1, -1, -1, 2, -1, 1, -1, -3, 2, 1, -1, -2, -1, 1, 1, 4, -1, -2, -1, -2, 1, 1, -1, 3, 2, 1, -3, -2, -1, -1, -1, -5, 1, 1, 1, 4, -1, 1, 1, 3, -1, -1, -1, -2, -2, 1, -1, -4, 2, -2, 1, -2, -1, 3, 1, 3, 1, 1, -1, 2, -1, 1, -2, 6, 1, -1, -1, -2, 1, -1, -1, -6, -1, 1, -2, -2, 1, -1, -1, -4, 4, 1, -1
Offset: 1

Views

Author

Werner Schulte, May 02 2018

Keywords

Crossrefs

Signed version of A005361.

Programs

  • Mathematica
    Array[LiouvilleLambda[#] Apply[Times, FactorInteger[#][[All, -1]] ] &, 83] (* Michael De Vlieger, May 06 2018 *)
  • PARI
    a(n) = (-1)^bigomega(n)*factorback(factor(n)[, 2]); \\ Michel Marcus, May 05 2018

Formula

Multiplicative with a(p^e) = e*(-1)^e, p prime and e > 0.
Dirichlet g.f.: (zeta(2*s))^2 / (zeta(s)*zeta(3*s)).
Dirichlet convolution with A048691(n) yields A092520(n).
Dirichlet inverse b(n), n>=1, is multiplicative with b(1)=1 and for p prime and e>0: b(p^e) = 0 if e mod 3 = 0 otherwise b(p^e) = (-1)^(3 - e mod 3).

A377141 Numbers whose cubes have more square divisors than the cube of any smaller number.

Original entry on oeis.org

1, 2, 4, 8, 12, 24, 36, 72, 144, 180, 360, 720, 900, 1800, 3600, 6300, 10800, 12600, 25200, 44100, 75600, 88200, 176400, 352800, 529200, 705600, 1411200, 1587600, 1940400, 3880800, 5821200, 7761600, 15523200, 17463600, 21344400, 42688800, 64033200, 85377600, 170755200
Offset: 1

Views

Author

Amiram Eldar, Oct 17 2024

Keywords

Comments

Indices of records in A092520.
The corresponding record values are 1, 2, 4, 5, 8, 10, 16, 20, 28, 32, 40, 56, 64, 80, 112, 128, ... (see the link for more values).

Crossrefs

Subsequence of A025487.
Cf. A092520.

Programs

  • Mathematica
    f[p_, e_] := Floor[(3*e+2)/2]; d[1] = 1; d[n_] := Times @@ f @@@ FactorInteger[n]; With[{v = Cases[Import["https://oeis.org/A025487/b025487.txt", "Table"], {, }][[;; , 2]]}, seq = {}; dm = 0; Do[If[(dk = d[v[[k]]]) > dm, dm = dk; AppendTo[seq, v[[k]]]], {k, 1, Length[v]}]; seq]
Showing 1-4 of 4 results.