A092582 Triangle read by rows: T(n,k) is the number of permutations p of [n] having length of first run equal to k.
1, 1, 1, 3, 2, 1, 12, 8, 3, 1, 60, 40, 15, 4, 1, 360, 240, 90, 24, 5, 1, 2520, 1680, 630, 168, 35, 6, 1, 20160, 13440, 5040, 1344, 280, 48, 7, 1, 181440, 120960, 45360, 12096, 2520, 432, 63, 8, 1, 1814400, 1209600, 453600, 120960, 25200, 4320, 630, 80, 9, 1
Offset: 1
Examples
T(4,3) = 3 because 1243, 1342 and 2341 are the only permutations of [4] having length of first run equal to 3. 1; 1, 1; 3, 2, 1; 12, 8, 3, 1; 60, 40, 15, 4, 1; 360, 240, 90, 24, 5, 1; 2520, 1680, 630, 168, 35, 6, 1; ...
References
- M. Bona, Combinatorics of Permutations, Chapman&Hall/CRC, Boca Raton, Florida, 2004.
Links
- Alois P. Heinz, Rows n = 1..141, flattened
- E. Barcucci, A. Del Lungo and R. Pinzani, "Deco" polyominoes, permutations and random generation, Theoretical Computer Science, 159, 1996, 29-42.
- Olivier Bodini, Antoine Genitrini, and Mehdi Naima, Ranked Schröder Trees, arXiv:1808.08376 [cs.DS], 2018.
- Olivier Bodini, Antoine Genitrini, Cécile Mailler, and Mehdi Naima, Strict monotonic trees arising from evolutionary processes: combinatorial and probabilistic study, hal-02865198 [math.CO] / [math.PR] / [cs.DS] / [cs.DM], 2020.
- Colin Defant and James Propp, Quantifying Noninvertibility in Discrete Dynamical Systems, arXiv:2002.07144 [math.CO], 2020.
- Emeric Deutsch and W. P. Johnson, Create your own permutation statistics, Math. Mag., 77, 130-134, 2004.
Crossrefs
Programs
-
GAP
Flat(List([1..11],n->Concatenation([1],List([1..n-1],k->Factorial(n)*k/Factorial(k+1))))); # Muniru A Asiru, Jun 10 2018
-
Magma
A092582:= func< n,k | k eq n select 1 else k*Factorial(n)/Factorial(k+1) >; [A092582(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Sep 06 2022
-
Mathematica
Drop[Drop[Abs[Map[Select[#, # < 0 &] &, Map[Differences, nn = 10; Range[0, nn]! CoefficientList[Series[(Exp[y x] - 1)/(1 - x), {x, 0, nn}], {x, y}]]]], 1], -1] // Grid (* Geoffrey Critzer, Jun 18 2017 *)
-
PARI
{T(n, k) = if( n<1 || k>n, 0, k==n, 1, n! * k /(k+1)!)}; /* Michael Somos, Jun 25 2017 */
-
SageMath
def A092582(n,k): return 1 if (k==n) else k*factorial(n)/factorial(k+1) flatten([[A092582(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Sep 06 2022
Formula
T(n, k) = n!*k/(k+1)! for k
Inverse of:
1;
-1, 1;
-1, -2, 1;
-1, -2, -3, 1;
-1, -2, -3, -4, 1;
... where A002260 = (1; 1,2; 1,2,3; ...). - Gary W. Adamson, Feb 22 2012
T(2n,n) = A092956(n-1) for n>0. - Alois P. Heinz, Jun 19 2017
From Alois P. Heinz, Dec 17 2021: (Start)
Sum_{k=1..n} k * T(n,k) = A002627(n).
|Sum_{k=1..n} (-1)^k * T(n,k)| = A055596(n) for n>=1. (End)
From G. C. Greubel, Sep 06 2022: (Start)
T(n, 1) = A001710(n).
T(n, 2) = 2*A001715(n) + [n=2]/3, n >= 2.
T(n, 3) = 3*A001720(n) + [n=3]/4, n >= 3.
T(n, 4) = 4*A001725(n) + [n=4]/5, n >= 4.
T(n, n-1) = A000027(n-1).
T(n, n-2) = A005563(n-1), n >= 3. (End)
Sum_{k=0..n} (k+1) * T(n,k) = A000522(n). - Alois P. Heinz, Apr 28 2023
Comments
Emeric Deutsch, Feb 23 2008