cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A051188 Sept-factorial numbers.

Original entry on oeis.org

1, 7, 98, 2058, 57624, 2016840, 84707280, 4150656720, 232436776320, 14643516908160, 1025046183571200, 78928556134982400, 6629998715338521600, 603329883095805465600, 59126328543388935628800
Offset: 0

Views

Author

Keywords

Comments

For n >= 1, a(n) is the order of the wreath product of the symmetric group S_n and the Abelian group (C_7)^n. - Ahmed Fares (ahmedfares(AT)my-deja.com), May 07 2001

Crossrefs

Programs

Formula

a(n) = n!*7^n =: (7*n)(!^7).
a(n) = 7*A034834(n) = Product_{k=1..n} 7*k, n >= 1.
E.g.f.: 1/(1 - 7*x).
G.f.: 1/(1 - 7*x/(1 - 7*x/(1 - 14*x/(1 - 14*x/(1 - 21*x/(1 - 21*x/(1 - 28*x/(1 - 28*x/(1 - ... (continued fraction). - Philippe Deléham, Jan 08 2012
From Amiram Eldar, Jun 25 2020: (Start)
Sum_{n>=0} 1/a(n) = e^(1/7) (A092516).
Sum_{n>=0} (-1)^n/a(n) = e^(-1/7) (A092750). (End)

A029574 Number of permutations of an n-set containing a 7-cycle.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 720, 5760, 51840, 518400, 5702400, 68428800, 889574400, 11564467200, 173467008000, 2775472128000, 47183026176000, 849294471168000, 16136594952192000, 322731899043840000, 6802195410616320000, 149648299033559040000, 3441910877771857920000
Offset: 0

Views

Author

Keywords

Crossrefs

Column k=7 of A293211.

Programs

  • PARI
    a(n) = n! * (1 - sum(k=0, floor(n/7), (-1)^k/(k!*7^k) ) ); \\ Michel Marcus, Aug 08 2013

Formula

a(n) = n! * (1 - sum_{k=0..floor(n/7)} (-1)^k/(k!*7^k)).
a(n)/n! is asymptotic to 1-e^(-1/7) = 1 - A092750.
E.g.f.: (1-exp(-x^7/7))/(1-x). - Alois P. Heinz, Oct 11 2017
Showing 1-2 of 2 results.