cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092956 a(n) = (2*n+2)!/((n+2)*n!).

Original entry on oeis.org

1, 8, 90, 1344, 25200, 570240, 15135120, 461260800, 15878903040, 609493248000, 25812039052800, 1195656969830400, 60138698780160000, 3264143527636992000, 190165504623494400000, 11836497605427855360000, 783921372659482337280000
Offset: 0

Views

Author

Amarnath Murthy, Mar 25 2004

Keywords

Crossrefs

Row sums of A105725.
Cf. A092582.

Programs

  • Magma
    [Factorial(n+1)*Binomial(2*n+2, n): n in [0..20]]; // G. C. Greubel, Aug 11 2022
    
  • Maple
    seq((2*n+2)!/(n+2)/n!,n=0..17); # Emeric Deutsch
    a:=n->sum(mul (j-k+n,j=1..n),k=1..n): seq(a(n),n=1..17); # Zerinvary Lajos, Jun 04 2007
  • Mathematica
    Table[(2n+2)!/((n+2) n!), {n, 0, 16}] (* Bruno Berselli, Mar 06 2013 *)
  • Maxima
    A092956(n):=(2*n+2)!/((n+2)*n!)$ makelist(A092956(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
    
  • SageMath
    [factorial(n+1)*binomial(2*n+2,n) for n in (0..20)] # G. C. Greubel, Aug 11 2022

Formula

a(n) = Sum_{k=1..n+1} Gamma(n+1+k)/Gamma(k). - Bruno Berselli, Mar 06 2013
Let E(x) = Sum_{n>=0} a(n)*x^(2*n)/n!, then E(x) = 2- E(0,x), where E(k,x) = 1 - x^2*(k+1)/( x^2*(k+1) + (k + 1 -x^2)*(k + 2 -x^2)/E(k+1,x) ); (continued fraction). - Sergei N. Gladkovskii, Oct 21 2013
a(n) = A092582(2n+2, n+1). - Alois P. Heinz, Jun 19 2017
From G. C. Greubel, Aug 11 2022: (Start)
G.f.: Hypergeometric2F1([2,2,3/2], [3], 4*x).
E.g.f.: 4*x*Hypergeometric2F1([5/2,3], [4], 4*x) + Hypergeometric2F1([3/2,2], [3], 4*x). (End)

Extensions

More terms from Emeric Deutsch, Apr 18 2005
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, May 27 2007
More terms from Zerinvary Lajos, Jun 04 2007