A092956 a(n) = (2*n+2)!/((n+2)*n!).
1, 8, 90, 1344, 25200, 570240, 15135120, 461260800, 15878903040, 609493248000, 25812039052800, 1195656969830400, 60138698780160000, 3264143527636992000, 190165504623494400000, 11836497605427855360000, 783921372659482337280000
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..350
Programs
-
Magma
[Factorial(n+1)*Binomial(2*n+2, n): n in [0..20]]; // G. C. Greubel, Aug 11 2022
-
Maple
seq((2*n+2)!/(n+2)/n!,n=0..17); # Emeric Deutsch a:=n->sum(mul (j-k+n,j=1..n),k=1..n): seq(a(n),n=1..17); # Zerinvary Lajos, Jun 04 2007
-
Mathematica
Table[(2n+2)!/((n+2) n!), {n, 0, 16}] (* Bruno Berselli, Mar 06 2013 *)
-
Maxima
A092956(n):=(2*n+2)!/((n+2)*n!)$ makelist(A092956(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
-
SageMath
[factorial(n+1)*binomial(2*n+2,n) for n in (0..20)] # G. C. Greubel, Aug 11 2022
Formula
a(n) = Sum_{k=1..n+1} Gamma(n+1+k)/Gamma(k). - Bruno Berselli, Mar 06 2013
Let E(x) = Sum_{n>=0} a(n)*x^(2*n)/n!, then E(x) = 2- E(0,x), where E(k,x) = 1 - x^2*(k+1)/( x^2*(k+1) + (k + 1 -x^2)*(k + 2 -x^2)/E(k+1,x) ); (continued fraction). - Sergei N. Gladkovskii, Oct 21 2013
a(n) = A092582(2n+2, n+1). - Alois P. Heinz, Jun 19 2017
From G. C. Greubel, Aug 11 2022: (Start)
G.f.: Hypergeometric2F1([2,2,3/2], [3], 4*x).
E.g.f.: 4*x*Hypergeometric2F1([5/2,3], [4], 4*x) + Hypergeometric2F1([3/2,2], [3], 4*x). (End)
Extensions
More terms from Emeric Deutsch, Apr 18 2005
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, May 27 2007
More terms from Zerinvary Lajos, Jun 04 2007