cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A093129 Binomial transform of Fibonacci(2n-1) (A001519).

Original entry on oeis.org

1, 2, 5, 15, 50, 175, 625, 2250, 8125, 29375, 106250, 384375, 1390625, 5031250, 18203125, 65859375, 238281250, 862109375, 3119140625, 11285156250, 40830078125, 147724609375, 534472656250, 1933740234375, 6996337890625
Offset: 0

Views

Author

Paul Barry, Mar 23 2004

Keywords

Crossrefs

Programs

  • GAP
    a:=[1,2];; for n in [3..30] do a[n]:=5*(a[n-1]-a[n-2]); od; a; # G. C. Greubel, Dec 27 2019
  • Magma
    I:=[1,2]; [n le 2 select I[n] else 5*(Self(n-1) - Self(n-2)): n in [1..30]]; // G. C. Greubel, Dec 27 2019
    
  • Maple
    a:= n-> (<<0|1>, <-5|5>>^n. <<1,2>>)[1,1]:
    seq(a(n), n=0..30);  # Alois P. Heinz, Aug 29 2015
  • Mathematica
    LinearRecurrence[{5, -5}, {1, 2}, 25] (* Jean-François Alcover, May 11 2019 *)
    Table[If[EvenQ[n], 5^(n/2)*Fibonacci[n-1], 5^((n-1)/2)*LucasL[n-1]], {n,0,30}] (* G. C. Greubel, Dec 27 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-3*x)/(1-5*x+5*x^2)) \\ G. C. Greubel, Dec 27 2019
    
  • Sage
    [lucas_number2(n,5,5) for n in range(-1,25)] # Zerinvary Lajos, Jul 08 2008
    

Formula

G.f.: (1-3*x)/(1-5*x+5*x^2).
a(n) = (5-sqrt(5))*((5+sqrt(5))/2)^n/10 + (5+sqrt(5))*((5-sqrt(5))/2)^n/10.
a(n) = A093123(n)/2^n.
a(n) = A020876(n-1). - R. J. Mathar, Sep 05 2008
a(n) = A030191(n) - 3*A030191(n-1). - R. J. Mathar, Jun 29 2012
a(2*n) = 5^n*Fibonacci(2*n-1), a(2*n+1) = 5^n*Lucas(2*n). - G. C. Greubel, Dec 27 2019
E.g.f.: (1/10)*exp((1/2)*(5-sqrt(5))*x)*(5 + sqrt(5) + (5 - sqrt(5))*exp(sqrt(5)*x)). - Stefano Spezia, Dec 28 2019

A247239 Array a(n,m) = ((n+2)/2)^m*Sum_{k=1..n+1} 1/sin(k*Pi/(n+2))^(2m), n>=0, k>=0, read by ascending antidiagonals.

Original entry on oeis.org

1, 2, 1, 3, 4, 1, 4, 10, 8, 1, 5, 20, 36, 16, 1, 6, 35, 120, 136, 32, 1, 7, 56, 329, 800, 528, 64, 1, 8, 84, 784, 3611, 5600, 2080, 128, 1, 9, 120, 1680, 13328, 42065, 40000, 8256, 256, 1, 10, 165, 3312, 42048, 241472, 499955, 288000, 32896, 512, 1
Offset: 0

Views

Author

Jean-François Alcover, Nov 28 2014

Keywords

Comments

Unexpectedly, it is conjectured (proof wanted) that the expression ((n+2)/2)^m * Sum_{k=1..n+1} 1/sin(k*Pi/(n+2))^(2m), n>=0, k>=0, always gives an integer.
For example, a(3,1) = (5/2)*(1/sin(Pi/5)^2 + 1/sin((2*Pi)/5)^2 + 1/sin((3*Pi)/5)^2 + 1/sin((4*Pi)/5)^2) = (5/2)*(2/(5/8 - sqrt(5)/8) + 2/(5/8 + sqrt(5)/8)), which simplifies to 20.

Examples

			Array a(n,m) begins:
  1,  1,   1,    1,     1,      1,       1,        1, ... 1 (A000012)
  2,  4,   8,   16,    32,     64,     128,      256, ... 2^(m+1) (A000079)
  3, 10,  36,  136,   528,   2080,    8256,    32896, ... A007582
  4, 20, 120,  800,  5600,  40000,  288000,  2080000, ... A093123
  5, 35, 329, 3611, 42065, 499955, 5980889, 71698571, ... not in the OEIS
  ...
1st column is n+1 (A000027).
2nd column is A000292.
3rd column is not in the OEIS.
		

Crossrefs

Programs

  • Mathematica
    a[n_, m_] := ((n + 2)/2)^m*Sum[1/Sin[k*(Pi/(n + 2))]^(2*m), {k, 1, n + 1}]; Table[a[n - m, m] // FullSimplify, {n, 0, 10}, {m, 0, n}] // Flatten
  • PARI
    a(n,m)={t=Pi/(n+2);u=1+n/2;round(sum(k=1,n+1,(u/sin(k*t)^2)^m))} \\ M. F. Hasler, Dec 03 2014

Formula

First formulas for rows:
a(0,m) = 1.
a(1,m) = 2^(m + 1).
a(2,m) = 2^m + 2^(2*m + 1).
a(3,m) = 2*((5 - sqrt(5))^m + (5 + sqrt(5))^m).
a(4,m) = 2^(2*m + 1) + 3^m + 2^(2*m + 1)*3^m.
First formulas for columns:
a(n,0) = n + 1.
a(n,1) = (n + 1)*(n + 2)*(n + 3)/6.
a(n,2) = coefficient of x^n in the expansion of (1 - x^4)/(1 - x)^8.
Let b(N,m) be (N/2)^m times the coefficient of x^(2*m) in 1-N*x*cot(N*arcsin(x))/ sqrt(1-x^2). Then for m>0, a(n,m) = b(n+2,m). - Ira M. Gessel, Apr 04 2023
Showing 1-2 of 2 results.