cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A140371 Primes of the form 26k + 7.

Original entry on oeis.org

7, 59, 137, 163, 241, 293, 397, 449, 631, 683, 709, 761, 787, 839, 1021, 1151, 1229, 1307, 1489, 1567, 1619, 1697, 1723, 1801, 1879, 1931, 2087, 2113, 2243, 2269, 2347, 2399, 2477, 2503, 2633, 2659, 2711, 2789, 2971, 3023, 3049, 3257, 3361, 3413, 3491, 3517
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jun 14 2008

Keywords

Crossrefs

Programs

Extensions

Edited by R. J. Mathar, Jun 16 2008

A140373 Primes of the form 26*n+11.

Original entry on oeis.org

11, 37, 89, 167, 193, 271, 349, 401, 479, 557, 661, 739, 947, 1051, 1103, 1129, 1181, 1259, 1493, 1571, 1597, 1753, 1831, 1987, 2039, 2143, 2221, 2273, 2351, 2377, 2663, 2689, 2741, 2767, 2819, 2897, 3001, 3079, 3209, 3313, 3391, 3469, 3547, 3677, 3833
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jun 14 2008

Keywords

Comments

Also primes of the form 13*n+11. - N. J. A. Sloane, Jul 11 2008

Crossrefs

Programs

Extensions

Edited by R. J. Mathar, Jun 16 2008

A140375 Primes of the form 26n+23.

Original entry on oeis.org

23, 101, 127, 179, 257, 283, 439, 491, 569, 647, 673, 751, 829, 881, 907, 1063, 1193, 1297, 1427, 1453, 1531, 1583, 1609, 1973, 1999, 2129, 2207, 2311, 2389, 2441, 2467, 2753, 2857, 2909, 3169, 3221, 3299, 3533, 3559, 3637, 3767, 3793, 3923, 4001, 4027
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jun 14 2008

Keywords

Comments

Also primes congruent to 10 mod 13. - N. J. A. Sloane, Jul 11 2008

Crossrefs

Programs

Extensions

Edited by R. J. Mathar, Jun 16 2008

A140372 Primes of the form 26k + 9.

Original entry on oeis.org

61, 113, 139, 191, 269, 347, 373, 503, 607, 659, 919, 971, 997, 1049, 1153, 1231, 1283, 1361, 1439, 1543, 1621, 1699, 1777, 1907, 1933, 2011, 2063, 2089, 2141, 2297, 2531, 2557, 2609, 2687, 2713, 2791, 2843, 2999, 3181, 3259, 3389, 3467, 3571, 3623, 3701
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jun 14 2008

Keywords

Comments

Also primes of the form 13k + 9. - N. J. A. Sloane, Jul 11 2008

Crossrefs

Programs

Extensions

Edited by R. J. Mathar, Jun 16 2008

A140374 Primes of the form 26k + 15.

Original entry on oeis.org

41, 67, 197, 223, 353, 379, 431, 457, 509, 587, 613, 691, 743, 769, 821, 977, 1237, 1289, 1367, 1471, 1523, 1549, 1601, 1627, 1783, 1861, 1913, 2017, 2069, 2251, 2381, 2459, 2693, 2719, 2797, 2927, 2953, 3083, 3109, 3187, 3343, 3499, 3733, 3863, 3889
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jun 14 2008

Keywords

Crossrefs

Programs

Extensions

Edited by R. J. Mathar, Jun 16 2008

A140376 Nonprimes of the form 26n+1.

Original entry on oeis.org

1, 27, 105, 183, 209, 235, 261, 287, 339, 365, 391, 417, 469, 495, 573, 625, 651, 703, 729, 755, 781, 807, 833, 885, 963, 989, 1015, 1041, 1067, 1119, 1145, 1197, 1275, 1353, 1379, 1405, 1431, 1457, 1509, 1535, 1561, 1587, 1639, 1665, 1691, 1717, 1743
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jun 14 2008

Keywords

Crossrefs

Programs

  • Magma
    [a: n in [0..80] | not IsPrime(a) where a is 26*n+1]; // Vincenzo Librandi, Mar 22 2014
  • Mathematica
    Select[26 Range[0, 100] + 1, ! PrimeQ@# &] (* Vincenzo Librandi, Mar 22 2014 *)

Extensions

Edited by R. J. Mathar, Jun 16 2008

A259142 Least prime p of the form n*q^2+(n+1)*r^2 with q and r prime.

Original entry on oeis.org

17, 83, 43, 61, 149, 199, 263, 113, 331, 139, 383, 373, 173, 191, 199, 569, 587, 547, 251, 269, 277, 757, 1223, 1321, 859, 347, 787, 373, 3779, 1789, 1063, 953, 433, 1181, 1019, 1069, 1283, 503, 2311, 5209, 1193, 1453, 563, 1301, 2389, 607, 1367, 1657, 641, 659, 1483, 1777, 1811, 1861, 719, 1913, 1657, 1997, 4391, 3229, 797, 1823
Offset: 1

Views

Author

Zak Seidov, Jun 19 2015

Keywords

Comments

Values of {p,q,r}: {17,3,2},{83,2,5},{43,3,2},{61,2,3},{149,5,2},{199,2,5},{263,3,5},{113,2,3}.
a(2) = A084866(1). - Michel Marcus, Jun 20 2015
For p in A093191, a((p-4)/13) = p. - Robert Israel, Apr 30 2018

Examples

			17=1*3^2+2*2^2, 83=2*2^2+3*5^2, 43=3*3^2+4*2^2.
		

Crossrefs

Programs

  • Maple
    P:= [seq(ithprime(i),i=1..20)]: np:= 20:
    for n from 1 to 100 do
      found:= false;
      while not found do
        R:= sort([seq(seq(n*q^2+(n+1)*p^2,p=P),q=P)]);
        w:= n*4+(n+1)*P[-1]^2+1;
        r:= ListTools:-SelectFirst(isprime,R);
        if r <> NULL and r <= w then
          A[n]:= r;
          found:= true;
        else
          P:= [op(P), seq(ithprime(i),i=np+1..np+20)];
          np:= np+20;
        fi
      od;
    od:
    seq(A[i],i=1..100); # Robert Israel, Apr 30 2018

A140368 Composites of the form 26k + 17.

Original entry on oeis.org

69, 95, 121, 147, 225, 303, 329, 355, 381, 407, 459, 485, 511, 537, 589, 615, 667, 693, 745, 771, 849, 875, 901, 927, 979, 1005, 1057, 1083, 1135, 1161, 1239, 1265, 1317, 1343, 1369, 1395, 1421, 1473, 1525, 1551, 1577, 1603, 1629, 1655, 1681, 1707, 1785
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jun 14 2008

Keywords

Crossrefs

Cf. A093191.

Programs

  • Magma
    [(26*n+17): n in [0..100]|not IsPrime(26*n+17)] // Vincenzo Librandi, Dec 18 2010
  • Mathematica
    Select[26*Range[80]+17,!PrimeQ[#]&] (* Harvey P. Dale, Oct 22 2013 *)

Extensions

Edited by R. J. Mathar, Jun 16 2008
Showing 1-8 of 8 results.