cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A092039 Decimal expansion of cube root of Pi.

Original entry on oeis.org

1, 4, 6, 4, 5, 9, 1, 8, 8, 7, 5, 6, 1, 5, 2, 3, 2, 6, 3, 0, 2, 0, 1, 4, 2, 5, 2, 7, 2, 6, 3, 7, 9, 0, 3, 9, 1, 7, 3, 8, 5, 9, 6, 8, 5, 5, 6, 2, 7, 9, 3, 7, 1, 7, 4, 3, 5, 7, 2, 5, 5, 9, 3, 7, 1, 3, 8, 3, 9, 3, 6, 4, 9, 7, 9, 8, 2, 8, 6, 2, 6, 6, 1, 4, 5, 6, 8, 2, 0, 6, 7, 8, 2, 0, 3, 5, 3, 8, 2, 0
Offset: 1

Views

Author

Mohammad K. Azarian, Mar 27 2004

Keywords

Comments

This is the diameter of a sphere with volume = (Pi^2)/6 = zeta(2) = A013661. - Eric Desbiaux, Jan 21 2009
Edge of a cube with volume Pi. - Omar E. Pol, Aug 09 2012

Examples

			1.4645918875615232630...
		

Crossrefs

Cf. A000796 (Pi), A091925 (Pi^3), A093204 (Pi^(-1/3)), A002161 (sqrt(Pi)), A197111 (cont.frac.).

Programs

Formula

1/A093204. - M. F. Hasler, Oct 07 2014

A197111 Continued fraction for cube root of Pi and its inverse.

Original entry on oeis.org

0, 1, 2, 6, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 2, 7, 1, 5, 5, 53, 3, 29, 3, 2, 6, 1, 1, 2, 1, 4, 8, 3, 2, 2, 1, 13, 1, 3, 1, 2, 1, 1, 1, 1, 2, 11, 4, 1, 37, 1, 142, 2, 1, 1, 8, 1, 19, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 3, 24, 1, 1, 1, 7, 1, 55, 9, 1, 1, 1, 224, 2
Offset: 0

Views

Author

Michael Lee, Oct 10 2011

Keywords

Comments

Starting with a(0) this is the cont.frac. of Pi^(-1/3), and starting with a(1) the cont.frac. of Pi^(1/3). - M. F. Hasler, Oct 07 2014

Examples

			Pi^(1/3) = 1.4645918875615232630201425272637903917385968556279371743572...
		

Crossrefs

Programs

  • Mathematica
    ContinuedFraction[Pi^(1/3)]
  • PARI
    contfrac(Pi^(-1/3)) \\ M. F. Hasler, Oct 07 2014

A248524 Beatty sequence for 1/(1-Pi^(-1/3)).

Original entry on oeis.org

3, 6, 9, 12, 15, 18, 22, 25, 28, 31, 34, 37, 40, 44, 47, 50, 53, 56, 59, 63, 66, 69, 72, 75, 78, 81, 85, 88, 91, 94, 97, 100, 104, 107, 110, 113, 116, 119, 122, 126, 129, 132, 135, 138, 141, 145, 148, 151, 154, 157, 160, 163, 167, 170, 173, 176, 179, 182
Offset: 1

Views

Author

M. F. Hasler, Oct 07 2014

Keywords

Comments

Beatty complement of A240977.

Crossrefs

Cf. A092039 (Pi^(1/3)), A093204 (Pi^(-1/3)), A022844 (Beatty seq. for Pi), A037086 (Beatty seq. for sqrt(Pi)).

Programs

  • Mathematica
    Table[Floor[n/(1 - Pi^(-1/3))], {n, 1, 50}] (* G. C. Greubel, Apr 06 2017 *)
  • PARI
    a(n)=n\(1-Pi^(-1/3))

Formula

a(n) = floor(n/(1-Pi^(-1/3))).
Showing 1-3 of 3 results.