cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A093527 Denominators of even raw moments in the distribution of line lengths for lines picked at random in the unit disk.

Original entry on oeis.org

1, 1, 3, 2, 5, 1, 7, 4, 9, 5, 11, 3, 13, 7, 1, 8, 17, 3, 19, 1, 7, 11, 23, 2, 25, 13, 27, 1, 29, 15, 31, 16, 11, 17, 5, 9, 37, 19, 39, 2, 41, 1, 43, 11, 1, 23, 47, 4, 49, 25, 17, 13, 53, 9, 55, 7, 19, 29, 59, 5, 61, 31, 21, 32, 13, 1, 67, 17, 23, 7, 71, 2, 73, 37, 5, 19, 1, 13, 79
Offset: 0

Views

Author

Eric W. Weisstein, Mar 30 2004

Keywords

Examples

			1, 128/(45*Pi), 1, 2048/(525*Pi), 5/3, 16384/(2205*Pi), ...
		

Crossrefs

Second column of A098505.
Cf. A000108.

Programs

Formula

a(k) = Denominator[(2*Gamma[3 + n])/((2 + n)*Gamma[2 + n/2]*Gamma[3 + n/2])] for n = 2k.
From Paul Barry, Sep 11 2004: (Start)
a(n) = numerator((n+1)(n+2)/binomial(2(n+1), n+1));
a(n) = numerator(2*binomial(n+2, 2)/binomial(2(n+1), n+1)). (End)
a(n) = numerator((n+1)/C(n+1)). - Paul Barry, Nov 17 2004
a(n) = denominator(binomial(2n, n)/n). - Enrique Pérez Herrero, Oct 05 2011
a(n) = n/gcd(n,binomial(2n,n)). - Peter Luschny, Oct 05 2011
a(n) = denominator((n + 2)*binomial(2*n+3, n+1)/((n + 1)*(2*n + 3))). - Stefano Spezia, Aug 06 2022

A093528 Numerators of odd raw moments in the distribution of line lengths for lines picked at random in the unit disk.

Original entry on oeis.org

128, 2048, 16384, 524288, 4194304, 67108864, 536870912, 34359738368, 274877906944, 4398046511104, 35184372088832, 1125899906842624, 9007199254740992, 144115188075855872, 1152921504606846976
Offset: 1

Views

Author

Eric W. Weisstein, Mar 30 2004

Keywords

Examples

			1, 128/(45*Pi), 1, 2048/(525*Pi), 5/3, 16384/(2205*Pi), ...
		

Crossrefs

Formula

a(k) = Numerator[(2*Gamma[3 + n])/((2 + n)*Gamma[2 + n/2]*Gamma[3 + n/2])] for n = 2k-1.

A093529 Pi*denominators of odd raw moments in the distribution of line lengths for lines picked at random in the unit disk.

Original entry on oeis.org

45, 525, 2205, 31185, 99099, 585585, 1640925, 35334585, 92147055, 468495027, 1166167275, 11408158125, 27484885575, 130734984825, 307452619485, 11455089532425, 26442675480375, 121132637200575, 275520749478975
Offset: 1

Views

Author

Eric W. Weisstein, Mar 30 2004

Keywords

Examples

			1, 128/(45*Pi), 1, 2048/(525*Pi), 5/3, 16384/(2205*Pi), ...
		

Crossrefs

Formula

a(k) = Pi*Denominator[(2*Gamma[3 + n])/((2 + n)*Gamma[2 + n/2]*Gamma[3 + n/2])] for n = 2k-1.

A098512 Second column and subdiagonal of number triangle A098509.

Original entry on oeis.org

1, 1, 1, 5, 7, 42, 22, 429, 715, 4862, 8398, 58786, 52003, 742900, 1337220, 646323, 17678835, 129644790, 79606450, 1767263190, 328206021, 8155422340, 45741281820, 343059613650, 107492012277, 4861946401452, 9183676536076
Offset: 0

Views

Author

Paul Barry, Sep 11 2004

Keywords

Crossrefs

Programs

  • Maple
    C := n -> binomial(2*n,n)/(n+1):
    A098512 := n -> C(n)/igcd(n,C(n)): # Peter Luschny, Oct 06 2011

Formula

a(n) = denominator(n(n+1)/binomial(2n, n)).
a(n) = denominator(n/C(n)). - Paul Barry, Nov 17 2004
a(n) = C(n) / gcd(n, C(n)). - Peter Luschny, Oct 06 2011

A195686 a(n) = C(2*n,n) / gcd(n,C(2*n,n)).

Original entry on oeis.org

1, 2, 3, 20, 35, 252, 154, 3432, 6435, 48620, 92378, 705432, 676039, 10400600, 20058300, 10341168, 300540195, 2333606220, 1512522550, 35345263800, 6892326441, 179419291480, 1052049481860, 8233430727600, 2687300306925, 126410606437752, 247959266474052
Offset: 0

Views

Author

Peter Luschny, Oct 06 2011

Keywords

Crossrefs

Programs

  • Maple
    A195686  := n -> binomial(2*n,n)/igcd(n,binomial(2*n,n));
  • Mathematica
    a[n_] := Numerator[Binomial[2n,n]/n]; Join[{1}, Table[a[n], {n, 100}]] (* Enrique Pérez Herrero, Mar 26 2012 *)

Formula

A093526(n) = a(n+1)/(n+2).
a(n) = numerator(C(2n,n)/n). - Enrique Pérez Herrero, Mar 26 2012
Sum_{n>=0} A093527(n)/a(n+1) = Sum_{n>=1} n/binomial(2*n,n) = 2/3 + 2*Pi/(9*sqrt(3)) (A145429). - Amiram Eldar, Jan 26 2022
a(n) = numerator((n + 1)*binomial(2*n+1, n)/(n*(2*n + 1))) for n > 0. - Stefano Spezia, Aug 06 2022
Showing 1-5 of 5 results.