cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A093527 Denominators of even raw moments in the distribution of line lengths for lines picked at random in the unit disk.

Original entry on oeis.org

1, 1, 3, 2, 5, 1, 7, 4, 9, 5, 11, 3, 13, 7, 1, 8, 17, 3, 19, 1, 7, 11, 23, 2, 25, 13, 27, 1, 29, 15, 31, 16, 11, 17, 5, 9, 37, 19, 39, 2, 41, 1, 43, 11, 1, 23, 47, 4, 49, 25, 17, 13, 53, 9, 55, 7, 19, 29, 59, 5, 61, 31, 21, 32, 13, 1, 67, 17, 23, 7, 71, 2, 73, 37, 5, 19, 1, 13, 79
Offset: 0

Views

Author

Eric W. Weisstein, Mar 30 2004

Keywords

Examples

			1, 128/(45*Pi), 1, 2048/(525*Pi), 5/3, 16384/(2205*Pi), ...
		

Crossrefs

Second column of A098505.
Cf. A000108.

Programs

Formula

a(k) = Denominator[(2*Gamma[3 + n])/((2 + n)*Gamma[2 + n/2]*Gamma[3 + n/2])] for n = 2k.
From Paul Barry, Sep 11 2004: (Start)
a(n) = numerator((n+1)(n+2)/binomial(2(n+1), n+1));
a(n) = numerator(2*binomial(n+2, 2)/binomial(2(n+1), n+1)). (End)
a(n) = numerator((n+1)/C(n+1)). - Paul Barry, Nov 17 2004
a(n) = denominator(binomial(2n, n)/n). - Enrique Pérez Herrero, Oct 05 2011
a(n) = n/gcd(n,binomial(2n,n)). - Peter Luschny, Oct 05 2011
a(n) = denominator((n + 2)*binomial(2*n+3, n+1)/((n + 1)*(2*n + 3))). - Stefano Spezia, Aug 06 2022

A093526 Numerators of even raw moments in the distribution of line lengths for lines picked at random in the unit disk.

Original entry on oeis.org

1, 1, 5, 7, 42, 22, 429, 715, 4862, 8398, 58786, 52003, 742900, 1337220, 646323, 17678835, 129644790, 79606450, 1767263190, 328206021, 8155422340, 45741281820, 343059613650, 107492012277, 4861946401452, 9183676536076
Offset: 0

Views

Author

Eric W. Weisstein, Mar 30 2004

Keywords

Examples

			1, 128/(45*Pi), 1, 2048/(525*Pi), 5/3, 16384/(2205*Pi), ...
		

Crossrefs

Programs

Formula

a(k) = Numerator[(2*Gamma[3 + n])/((2 + n)*Gamma[2 + n/2]*Gamma[3 + n/2])] for n = 2k.
a(n) = denominator((n+1)/C(n+1)). - Paul Barry, Nov 17 2004
a(n) = A195686(n+1) / (n+2). - Peter Luschny, Oct 06 2011

A093528 Numerators of odd raw moments in the distribution of line lengths for lines picked at random in the unit disk.

Original entry on oeis.org

128, 2048, 16384, 524288, 4194304, 67108864, 536870912, 34359738368, 274877906944, 4398046511104, 35184372088832, 1125899906842624, 9007199254740992, 144115188075855872, 1152921504606846976
Offset: 1

Views

Author

Eric W. Weisstein, Mar 30 2004

Keywords

Examples

			1, 128/(45*Pi), 1, 2048/(525*Pi), 5/3, 16384/(2205*Pi), ...
		

Crossrefs

Formula

a(k) = Numerator[(2*Gamma[3 + n])/((2 + n)*Gamma[2 + n/2]*Gamma[3 + n/2])] for n = 2k-1.
Showing 1-3 of 3 results.