cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A093526 Numerators of even raw moments in the distribution of line lengths for lines picked at random in the unit disk.

Original entry on oeis.org

1, 1, 5, 7, 42, 22, 429, 715, 4862, 8398, 58786, 52003, 742900, 1337220, 646323, 17678835, 129644790, 79606450, 1767263190, 328206021, 8155422340, 45741281820, 343059613650, 107492012277, 4861946401452, 9183676536076
Offset: 0

Views

Author

Eric W. Weisstein, Mar 30 2004

Keywords

Examples

			1, 128/(45*Pi), 1, 2048/(525*Pi), 5/3, 16384/(2205*Pi), ...
		

Crossrefs

Programs

Formula

a(k) = Numerator[(2*Gamma[3 + n])/((2 + n)*Gamma[2 + n/2]*Gamma[3 + n/2])] for n = 2k.
a(n) = denominator((n+1)/C(n+1)). - Paul Barry, Nov 17 2004
a(n) = A195686(n+1) / (n+2). - Peter Luschny, Oct 06 2011

A098505 Numerators in inverse of a Catalan scaled binomial matrix.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 2, 3, 2, 1, 1, 5, 5, 5, 5, 1, 1, 1, 5, 5, 5, 1, 1, 1, 7, 7, 35, 35, 7, 7, 1, 1, 4, 14, 28, 7, 28, 14, 4, 1, 1, 9, 18, 42, 63, 63, 42, 18, 9, 1, 1, 5, 45, 30, 105, 63, 105, 30, 45, 5, 1, 1, 11, 55, 165, 165, 33, 33, 165, 165, 55, 11, 1, 1, 3, 33, 55, 495, 198
Offset: 0

Views

Author

Paul Barry, Sep 11 2004

Keywords

Comments

Row sums are A098506. Diagonal sums are A098507. Second column is A093527. Third column is A098508. Numerators in the inverse of the signed version of A098474, defined by T(n,k)=(-1)^(n-k)binomial(2k,k)binomial(n,k)/(k+1)

Examples

			Rows begin:
  1;
  1,1;
  1,1,1;
  1,3,3,1;
  1,2,3,2,1;
  1,5,5,5,5,1;
  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Numerator[(n + 1)*Binomial[n, k]/Binomial[2*n, n]], {n, 0, 15}, {k, 0, n}] (* Paolo Xausa, Aug 30 2024 *)

Formula

T(n, k) = numerator((n+1)*binomial(n, k)/binomial(2n, n)).

A093528 Numerators of odd raw moments in the distribution of line lengths for lines picked at random in the unit disk.

Original entry on oeis.org

128, 2048, 16384, 524288, 4194304, 67108864, 536870912, 34359738368, 274877906944, 4398046511104, 35184372088832, 1125899906842624, 9007199254740992, 144115188075855872, 1152921504606846976
Offset: 1

Views

Author

Eric W. Weisstein, Mar 30 2004

Keywords

Examples

			1, 128/(45*Pi), 1, 2048/(525*Pi), 5/3, 16384/(2205*Pi), ...
		

Crossrefs

Formula

a(k) = Numerator[(2*Gamma[3 + n])/((2 + n)*Gamma[2 + n/2]*Gamma[3 + n/2])] for n = 2k-1.

A093529 Pi*denominators of odd raw moments in the distribution of line lengths for lines picked at random in the unit disk.

Original entry on oeis.org

45, 525, 2205, 31185, 99099, 585585, 1640925, 35334585, 92147055, 468495027, 1166167275, 11408158125, 27484885575, 130734984825, 307452619485, 11455089532425, 26442675480375, 121132637200575, 275520749478975
Offset: 1

Views

Author

Eric W. Weisstein, Mar 30 2004

Keywords

Examples

			1, 128/(45*Pi), 1, 2048/(525*Pi), 5/3, 16384/(2205*Pi), ...
		

Crossrefs

Formula

a(k) = Pi*Denominator[(2*Gamma[3 + n])/((2 + n)*Gamma[2 + n/2]*Gamma[3 + n/2])] for n = 2k-1.

A098512 Second column and subdiagonal of number triangle A098509.

Original entry on oeis.org

1, 1, 1, 5, 7, 42, 22, 429, 715, 4862, 8398, 58786, 52003, 742900, 1337220, 646323, 17678835, 129644790, 79606450, 1767263190, 328206021, 8155422340, 45741281820, 343059613650, 107492012277, 4861946401452, 9183676536076
Offset: 0

Views

Author

Paul Barry, Sep 11 2004

Keywords

Crossrefs

Programs

  • Maple
    C := n -> binomial(2*n,n)/(n+1):
    A098512 := n -> C(n)/igcd(n,C(n)): # Peter Luschny, Oct 06 2011

Formula

a(n) = denominator(n(n+1)/binomial(2n, n)).
a(n) = denominator(n/C(n)). - Paul Barry, Nov 17 2004
a(n) = C(n) / gcd(n, C(n)). - Peter Luschny, Oct 06 2011

A195686 a(n) = C(2*n,n) / gcd(n,C(2*n,n)).

Original entry on oeis.org

1, 2, 3, 20, 35, 252, 154, 3432, 6435, 48620, 92378, 705432, 676039, 10400600, 20058300, 10341168, 300540195, 2333606220, 1512522550, 35345263800, 6892326441, 179419291480, 1052049481860, 8233430727600, 2687300306925, 126410606437752, 247959266474052
Offset: 0

Views

Author

Peter Luschny, Oct 06 2011

Keywords

Crossrefs

Programs

  • Maple
    A195686  := n -> binomial(2*n,n)/igcd(n,binomial(2*n,n));
  • Mathematica
    a[n_] := Numerator[Binomial[2n,n]/n]; Join[{1}, Table[a[n], {n, 100}]] (* Enrique Pérez Herrero, Mar 26 2012 *)

Formula

A093526(n) = a(n+1)/(n+2).
a(n) = numerator(C(2n,n)/n). - Enrique Pérez Herrero, Mar 26 2012
Sum_{n>=0} A093527(n)/a(n+1) = Sum_{n>=1} n/binomial(2*n,n) = 2/3 + 2*Pi/(9*sqrt(3)) (A145429). - Amiram Eldar, Jan 26 2022
a(n) = numerator((n + 1)*binomial(2*n+1, n)/(n*(2*n + 1))) for n > 0. - Stefano Spezia, Aug 06 2022
Showing 1-6 of 6 results.