cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093566 a(n) = n*(n-1)*(n-2)*(n-3)*(n^2-3*n-2)/48.

Original entry on oeis.org

0, 0, 0, 0, 1, 20, 120, 455, 1330, 3276, 7140, 14190, 26235, 45760, 76076, 121485, 187460, 280840, 410040, 585276, 818805, 1125180, 1521520, 2027795, 2667126, 3466100, 4455100, 5668650, 7145775, 8930376, 11071620, 13624345, 16649480, 20214480
Offset: 0

Views

Author

Keywords

Comments

a(n+1) is the number of chiral pairs of colorings of the faces of a cube (vertices of a regular octahedron) using n or fewer colors. - Robert A. Russell, Sep 28 2020

Examples

			For a(3+1) = 1, each of the three colors is applied to a pair of adjacent faces of the cube (vertices of the octahedron). - _Robert A. Russell_, Sep 28 2020
		

Crossrefs

From Robert A. Russell, Sep 28 2020: (Start)
Cf. A047780 (oriented), A198833 (unoriented), A337898 (achiral) colorings.
a(n+1) = A325006(3,n) (chiral pairs of colorings of orthotope facets or orthoplex vertices).
a(n+1) = A337889(3,n) (chiral pairs of colorings of orthotope faces or orthoplex peaks).
Other polyhedra: A000332 (tetrahedron), A337896 (cube/octahedron).
(End)

Programs

  • Mathematica
    Table[ Binomial[ Binomial[n-1, 2], 3], {n,0,32}]
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,0,0,0,1,20,120},40] (* Harvey P. Dale, Feb 18 2016 *)
  • PARI
    a(n)=n*(n-1)*(n-2)*(n-3)*(n^2-3*n-2)/48 \\ Charles R Greathouse IV, Jun 11 2015
  • Sage
    [(binomial(binomial(n,2),3)) for n in range(-1, 33)] # Zerinvary Lajos, Nov 30 2009
    

Formula

a(n) = binomial(binomial(n-1, 2), 3).
G.f.: -x^4*(1+13*x+x^2)/(x-1)^7. - R. J. Mathar, Dec 08 2010
a(n+1) = 1*C(n,3) + 16*C(n,4) + 30*C(n,5) + 15*C(n,6), where the coefficient of C(n,k) is the number of chiral pairs of colorings using exactly k colors. - Robert A. Russell, Sep 28 2020
a(n) = A000217(n-1)*A239352(n-2)/6. - R. J. Mathar, Mar 25 2022

Extensions

Edited (with a new definition) by N. J. A. Sloane, Jul 02 2008