A093566 a(n) = n*(n-1)*(n-2)*(n-3)*(n^2-3*n-2)/48.
0, 0, 0, 0, 1, 20, 120, 455, 1330, 3276, 7140, 14190, 26235, 45760, 76076, 121485, 187460, 280840, 410040, 585276, 818805, 1125180, 1521520, 2027795, 2667126, 3466100, 4455100, 5668650, 7145775, 8930376, 11071620, 13624345, 16649480, 20214480
Offset: 0
Examples
For a(3+1) = 1, each of the three colors is applied to a pair of adjacent faces of the cube (vertices of the octahedron). - _Robert A. Russell_, Sep 28 2020
Links
- Solomon W. Golomb, Iterated binomial coefficients, Amer. Math. Monthly, 87 (1980), 719-727.
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Crossrefs
From Robert A. Russell, Sep 28 2020: (Start)
a(n+1) = A325006(3,n) (chiral pairs of colorings of orthotope facets or orthoplex vertices).
a(n+1) = A337889(3,n) (chiral pairs of colorings of orthotope faces or orthoplex peaks).
(End)
Programs
-
Mathematica
Table[ Binomial[ Binomial[n-1, 2], 3], {n,0,32}] LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,0,0,0,1,20,120},40] (* Harvey P. Dale, Feb 18 2016 *)
-
PARI
a(n)=n*(n-1)*(n-2)*(n-3)*(n^2-3*n-2)/48 \\ Charles R Greathouse IV, Jun 11 2015
-
Sage
[(binomial(binomial(n,2),3)) for n in range(-1, 33)] # Zerinvary Lajos, Nov 30 2009
Formula
a(n) = binomial(binomial(n-1, 2), 3).
G.f.: -x^4*(1+13*x+x^2)/(x-1)^7. - R. J. Mathar, Dec 08 2010
a(n+1) = 1*C(n,3) + 16*C(n,4) + 30*C(n,5) + 15*C(n,6), where the coefficient of C(n,k) is the number of chiral pairs of colorings using exactly k colors. - Robert A. Russell, Sep 28 2020
Extensions
Edited (with a new definition) by N. J. A. Sloane, Jul 02 2008
Comments