cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093600 Numerator of Sum_{1<=k<=n, gcd(k,n)=1} 1/k.

Original entry on oeis.org

1, 1, 3, 4, 25, 6, 49, 176, 621, 100, 7381, 552, 86021, 11662, 18075, 91072, 2436559, 133542, 14274301, 5431600, 9484587, 2764366, 19093197, 61931424, 399698125, 281538452, 8770427199, 1513702904, 315404588903, 323507400, 9304682830147
Offset: 1

Views

Author

T. D. Noe, Apr 03 2004

Keywords

Comments

The divisibility properties of this sequence are given by Leudesdorf's theorem.
Problem: are there numbers n > 1 such that n^4 | a(n)? Let b(n) be the numerator of Sum_{1<=k<=n, gcd(k,n)=1} 1/k^2. Conjecture: if, for some e > 0, n^e | a(n), then n^(e-1) | b(n). It appears that, for any odd number n, n^e | a(n) if and only if n^(e-1) | b(n). - Thomas Ordowski, Aug 12 2019

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th ed., Oxford Univ. Press, 1971, page 100. [3rd. ed., Theorem 128, page 101]

Crossrefs

Cf. A069220 (denominator of this sum), A001008 (numerator of the n-th harmonic number).

Programs

  • Magma
    [Numerator(&+[1/k:k in [1..n]|Gcd(k,n) eq 1]):n in [1..31]]; // Marius A. Burtea, Aug 14 2019
  • Mathematica
    Table[s=0; Do[If[GCD[i, n]==1, s=s+1/i], {i, n}]; Numerator[s], {n, 1, 35}]
  • PARI
    for (n=1, 40, print1(numerator(sum(k=1, n, if (gcd(k, n)==1, 1/k))), ", ")) \\ Seiichi Manyama, Aug 11 2017
    

Formula

G.f. A(x) (for fractions) satisfies: A(x) = -log(1 - x)/(1 - x) - Sum_{k>=2} A(x^k)/k. - Ilya Gutkovskiy, Mar 31 2020