A093718 a(n) = (n mod 3)^(n mod 2).
1, 1, 1, 0, 1, 2, 1, 1, 1, 0, 1, 2, 1, 1, 1, 0, 1, 2, 1, 1, 1, 0, 1, 2, 1, 1, 1, 0, 1, 2, 1, 1, 1, 0, 1, 2, 1, 1, 1, 0, 1, 2, 1, 1, 1, 0, 1, 2, 1, 1, 1, 0, 1, 2, 1, 1, 1, 0, 1, 2, 1, 1, 1, 0, 1, 2, 1, 1, 1, 0, 1, 2, 1, 1, 1, 0, 1, 2, 1, 1, 1, 0, 1, 2, 1, 1, 1, 0, 1, 2, 1, 1, 1, 0, 1, 2, 1, 1, 1, 0, 1, 2
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (1,-1,1,-1,1).
Programs
-
Magma
&cat [[1, 1, 1, 0, 1, 2]^^20]; // Wesley Ivan Hurt, Jun 23 2016
-
Maple
A093718:=n->(n mod 3)^(n mod 2): seq(A093718(n), n=0..100); # Wesley Ivan Hurt, Aug 16 2014
-
Mathematica
Table[Mod[n + 3, 2 + Mod[n, 2]], {n, 0, 100}] (* Wesley Ivan Hurt, Aug 16 2014 *) LinearRecurrence[{1,-1,1,-1,1},{1,1,1,0,1},120] (* Harvey P. Dale, Jan 17 2021 *)
Formula
G.f.: ( -1-x^2-2*x^4+x^3 ) / ( (x-1)*(1-x+x^2)*(1+x+x^2) ). - R. J. Mathar, Jun 09 2013
a(n) = (n + 3) mod (2 + n mod 2) - Wesley Ivan Hurt, Aug 16 2014
From Wesley Ivan Hurt, Jun 23 2016: (Start)
a(n) = cos(n*Pi/6) * (6*cos(n*Pi/6)-3*cos(n*Pi/2)-sqrt(3)*sin(n*Pi/2))/3.
a(n) = a(n-1) - a(n-2) + a(n-3) - a(n-4) + a(n-5).
a(n) = a(n-6) for n>5. (End)
E.g.f.: cosh(x) - cosh(x/2)*sin(sqrt(3)*x/2)/sqrt(3) + cos(sqrt(3)*x/2)*sinh(x/2) + sinh(x). - Stefano Spezia, Jul 26 2024
Comments