cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A093719 a(n) = (n mod 2)^(n mod 3).

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 12 2004

Keywords

Comments

This is a periodic sequence with period 6. The repeating block is 1,1,0,1,0,1. - Michel Dekking, Sep 19 2020

Crossrefs

Programs

Formula

a(n) = A000035(n)^A010872(n).
a(A047273(n)) = 1, a(A047235(n)) = 0. [Reinhard Zumkeller, Oct 01 2008]
G.f.: -(x^5 + x^3 + x + 1)/(x^6 - 1). - Colin Barker, Apr 01 2013
E.g.f.: (2*cos(sqrt(3)*x/2)*cosh(x/2) + cosh(x))/3 + sinh(x). - Stefano Spezia, Jul 26 2024

A242112 a(n) = floor((2*n+6)/(5-(-1)^n)).

Original entry on oeis.org

1, 1, 2, 2, 3, 2, 4, 3, 5, 4, 6, 4, 7, 5, 8, 6, 9, 6, 10, 7, 11, 8, 12, 8, 13, 9, 14, 10, 15, 10, 16, 11, 17, 12, 18, 12, 19, 13, 20, 14, 21, 14, 22, 15, 23, 16, 24, 16, 25, 17, 26, 18, 27, 18, 28, 19, 29, 20, 30, 20, 31, 21, 32, 22, 33, 22, 34, 23, 35, 24, 36
Offset: 0

Views

Author

Wesley Ivan Hurt, Aug 21 2014

Keywords

Crossrefs

Programs

  • Magma
    [Floor((2*n+6)/(5-(-1)^n)) : n in [0..100]];
    
  • Magma
    [IsEven(n) select 1+n/2 else 1+Floor(n/3): n in [0..80]]; // Bruno Berselli, Aug 22 2014
  • Maple
    A242112:=n->floor((2*n+6)/(5-(-1)^n)): seq(A242112(n), n=0..100);
  • Mathematica
    Table[Floor[(2 n + 6)/(5 - (-1)^n)], {n, 0, 100}]
    LinearRecurrence[{0,1,0,0,0,1,0,-1},{1,1,2,2,3,2,4,3},80] (* Harvey P. Dale, Oct 24 2017 *)

Formula

a(n) = a(n-2) + a(n-6) - a(n-8).
a(n) = ( n+3 - A093718(n) ) / A010693(n).
From Robert Israel, Aug 22 2014: (Start)
a(n) = sqrt(3)/18*(sin(2*n*Pi/3)+sin(n*Pi/3)) + 1/6*(cos(2*n*Pi/3)-cos(n*Pi/3)) + (-1)^n*(2+n)/12 + 5*(n+2)/12.
G.f.: (1 + x + x^2 + x^3 + x^4)/(1 - x^2 - x^6 + x^8). (End)
a(n) = 1 + n/2 if n is even, otherwise a(n) = 1 + floor(n/3). - Bruno Berselli, Aug 22 2014
Showing 1-2 of 2 results.