A093963
Antidiagonal sums of array in A093966.
Original entry on oeis.org
1, 3, 8, 20, 49, 123, 312, 824, 2221, 6235, 17904, 53348, 162545, 511747, 1645776, 5448600, 18404189, 63794611, 225353368, 814801812, 2999022641, 11274044075, 43100574472, 167987074584, 665229445293, 2681607587627, 10973746015456
Offset: 1
-
A[n_, k_]:= A[n, k]= If[n==1, 1, If[k==1, n, If[2<=kG. C. Greubel, Dec 29 2021 *)
-
@CachedFunction
def A(n, k):
if (n==1): return 1
elif (k==1): return n
elif (2 <= k < n+1): return factorial(k)*binomial(n, k) + sum( j*factorial(j)*binomial(n, j) for j in (1..k-1) )
else: return sum( j*factorial(j)*binomial(n, j) for j in (1..n) )
@CachedFunction
def a(n): return sum( A(k, n-k+1) for k in (1..n) )
[a(n) for n in (1..30)] # G. C. Greubel, Dec 29 2021
A093964
a(n) = Sum_{k=1..n} k*k!*C(n,k).
Original entry on oeis.org
0, 1, 6, 33, 196, 1305, 9786, 82201, 767208, 7891281, 88776910, 1085051121, 14322674796, 203121569833, 3080677142466, 49764784609065, 853110593298256, 15469738758475041, 295858753755835158, 5951981987323272001, 125652953065713520020, 2777591594084193600441
Offset: 0
G.f. = x + 6*x^2 + 33*x^3 + 196*x^4 + 1305*x^5 + 9786*x^6 + 82201*x^7 + ...
-
[0] cat [n le 2 select 6^(n-1) else n*((n+1)*Self(n-1) - (n-1)*Self(n-2))/(n-1): n in [1..30]]; // G. C. Greubel, Dec 29 2021
-
seq(add(k*n!/(n-k)!,k=1..n),n=0..20); # Emeric Deutsch, Aug 16 2006
# second Maple program:
a:= proc(n) a(n):=`if`(n<2, n, n*((n+1)/(n-1)*a(n-1)-a(n-2))) end:
seq(a(n), n=0..30); # Alois P. Heinz, Jan 21 2013
-
nn=21;Range[0,nn]!CoefficientList[Series[D[Exp[y x]/(1-x)^2,y]/.y->1,{x,0,nn}],x] (* Geoffrey Critzer, Feb 24 2014 *)
-
a(n)=sum(k=1,n,k*k!*binomial(n,k))
-
[factorial(n)*( x*exp(x)/(1-x)^2 ).series(x,n+1).list()[n] for n in (0..30)] # G. C. Greubel, Dec 29 2021
A093965
Number of functions of [n] to [n] that simultaneously avoid the patterns 112 and 221.
Original entry on oeis.org
1, 4, 21, 124, 825, 6186, 51961, 484968, 4988241, 56117710, 685883121, 9053657196, 128397320233, 1947359356866, 31457343457065, 539268744978256, 9778739908939041, 187018400758459158, 3762370179964296001, 79427814910357360020, 1755772750650004800441
Offset: 1
-
[n le 2 select 4^(n-1) else n*((n+1)*Self(n-1) - (n-1)*Self(n-2))/(n-1): n in [1..30]]; // G. C. Greubel, Dec 29 2021
-
Rest[CoefficientList[Series[x(E^x-x)/(1-x)^2, {x, 0, 20}], x]* Range[0, 20]!] (* Vaclav Kotesovec, Nov 20 2012 *)
-
my(x='x+O('x^66)); Vec(serlaplace(x*(exp(x)-x)/(1-x)^2)) \\ Joerg Arndt, May 11 2013
-
[factorial(n)*( x*(exp(x) -x)/(1-x)^2 ).series(x,n+1).list()[n] for n in (1..30)] # G. C. Greubel, Dec 29 2021
Showing 1-3 of 3 results.
Comments