cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093967 a(n) = n * Pell(n).

Original entry on oeis.org

0, 1, 4, 15, 48, 145, 420, 1183, 3264, 8865, 23780, 63151, 166320, 434993, 1130948, 2925375, 7533312, 19323713, 49395780, 125877071, 319888560, 810893265, 2050891876, 5176349663, 13040153280, 32793453025, 82337215012, 206424991215
Offset: 0

Views

Author

Paul Barry, Apr 21 2004

Keywords

Comments

Binomial transform of A093968.

Crossrefs

Programs

  • Magma
    I:=[0,1,4,15]; [n le 4 select I[n] else 4*Self(n-1)-2*Self(n-2)-4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Dec 20 2015
    
  • Maple
    seq(fibonacci(n,2)*n, n=0..27); # Zerinvary Lajos, Apr 05 2008
  • Mathematica
    LinearRecurrence[{4,-2,-4,-1}, {0,1,4,15}, 30] (* Vincenzo Librandi, Dec 20 2015 *)
  • PARI
    { default(realprecision, 100); s=sqrt(2); for (n=0, 100, a=n*round(((1+s)^n-(1-s)^n)/(2*s)); write("b093967.txt", n, " ", a); ) } \\ Harry J. Smith, Jun 17 2009
    
  • Sage
    [n*lucas_number1(n,2,-1) for n in (0..30)] # G. C. Greubel, Dec 28 2021

Formula

G.f.: x*(1+x^2)/(1 - 2*x - x^2)^2;
a(n) = n*((1+sqrt(2))^n - (1-sqrt(2))^n)/(2*sqrt(2));
a(n) = n * A000129(n).