A094061 Number of n-moves paths of a king starting and ending at the origin of an infinite chessboard.
1, 0, 8, 24, 216, 1200, 8840, 58800, 423640, 3000480, 21824208, 158964960, 1171230984, 8668531872, 64574844048, 483114856224, 3630440899800, 27379154692032, 207172490054816, 1572194644061184, 11962847247681616, 91242602561647680, 697438669619791008
Offset: 0
References
- D. Joyner, "Adventures in Group Theory: Rubik's Cube, Merlin's Machine and Other Mathematical Toys", Johns Hopkins University Press, 2002, pp. 79
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Peter Bala, A note on A094061
Programs
-
Maple
a:=array(0..30):a[0]:=1:a[1]:=0:a[2]:=8:a[3]:=24:for n from 3 to 29 do a[n+1]:= (n*(5*n+1)*a[n]+2*(15*n^2+6*n-5)*a[n-1]-8*(5*n^2-23*n+21)*a[n-2]-64*(n-2)^2*a[n-3])/(n+1)^2: print(n+1,a[n+1]) od: # second Maple program a:= proc(n) option remember; `if`(n<3, (n-1)*(9*n-2)/2, ((n-1)*(3*n-1)*(3*n-4) *a(n-1) +(108*n^3-396*n^2+452*n-152) *a(n-2) +32*(3*n-2)*(n-2)^2 *a(n-3))/ (n^2*(3*n-5))) end: seq(a(n), n=0..30); # Alois P. Heinz, Nov 02 2012
-
Mathematica
a[n_]:=Module[{f=(x+x^-1+y+y^-1+x y+x^-1y+x^-1y^-1+x y^-1)^n,s}, s=Series[f,{x,0,0},{y,0,0}]; SeriesCoefficient[s,{0,0}]]; Table[a[n], {n,1,22}] (* Armin Vollmer (Armin.Vollmer(AT)kabelleipzig.de), May 01 2006 *) CoefficientList[Series[1/(1+4*x)*LegendreP[-1/2,1-32*x*(1+x)/(1+4*x)^2], {x, 0, 20}], x] (* Vaclav Kotesovec, Aug 16 2013 *)
-
Maxima
a[0]:1$ a[1]:0$ a[2]:8$ a[3]:24$ a[n]:=((n-1)*(3*n-1)*(3*n-4) *a[n-1] +(108*n^3-396*n^2+452*n-152) *a[n-2] +32*(3*n-2)*(n-2)^2 *a[n-3])/ (n^2*(3*n-5))$ A094061(n):=a[n]$ makelist(A094061(n),n,0,30); /* Martin Ettl, Nov 03 2012 */
-
PARI
{a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n, k)*polcoef((1+x+1/x)^k, 0)^2)} \\ Seiichi Manyama, Oct 29 2019
-
PARI
{a(n) = polcoef(polcoef(((x+1/x)*(y+1/y)+x^2+1/x^2+y^2+1/y^2)^n, 0), 0)} \\ Seiichi Manyama, Nov 03 2019
Formula
D-finite with recurrence (n+1)^2*a(n+1) = n*(5*n+1)*a(n) + 2*(15*n^2+6*n-5)*a(n-1) - 8*(5*n^2-23*n+21) *a(n-2) - 64*(n-2)^2*a(n-3).
G.f.: (2/(Pi*(1+4*x))) * EllipticK(4*sqrt(x*(1+x))/(1+4*x)) = 1/(1+4*x) * hypergeom([1/2,1/2], [1], 16*(x*(1+x))/(1+4*x)^2). - Sergey Perepechko, Jan 15 2011
a(n) ~ 2^(3*n+1)/(3*Pi*n). - Vaclav Kotesovec, Aug 16 2013
a(n) = (1/Pi^2) * Integral_{y = 0..Pi} Integral_{x = 0..Pi} (2*cos(x) + 2*cos(y) + 4*cos(x)*cos(y))^n dx dy. - Peter Bala, Feb 14 2017
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * A002426(k)^2. - Seiichi Manyama, Oct 29 2019
From Peter Bala, Feb 08 2022: (Start)
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and positive integers n and k.
Conjecture: the stronger congruences a(n*p^k) == a(n*p^(k-1)) (mod p^(2*k)) hold for all primes p >= 5 and positive integers n and k. (End)
a(n) = Sum_{j = 0..n} Sum_{k = 0..j} binomial(2*j,j)^2*binomial(j,k)* binomial(n+j-k,2*j)*(-4)^(n-j-k). - Peter Bala, Mar 19 2022
Extensions
More terms from and entry improved by Sergey Perepechko, Sep 06 2004
Comments