A094214 Decimal expansion of 1/phi = phi - 1.
6, 1, 8, 0, 3, 3, 9, 8, 8, 7, 4, 9, 8, 9, 4, 8, 4, 8, 2, 0, 4, 5, 8, 6, 8, 3, 4, 3, 6, 5, 6, 3, 8, 1, 1, 7, 7, 2, 0, 3, 0, 9, 1, 7, 9, 8, 0, 5, 7, 6, 2, 8, 6, 2, 1, 3, 5, 4, 4, 8, 6, 2, 2, 7, 0, 5, 2, 6, 0, 4, 6, 2, 8, 1, 8, 9, 0, 2, 4, 4, 9, 7, 0, 7, 2, 0, 7, 2, 0, 4, 1, 8, 9, 3, 9, 1, 1, 3, 7, 4, 8, 4
Offset: 0
Examples
0.6180339887498948482045868343656381177203091798057628621354486227052604628...
References
- Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 137-138, 178-180, 257.
Links
- Harry J. Smith, Table of n, a(n) for n = 0..20000
- Aziz El Kacimi, Des triangles dorés, Images des Mathématiques, CNRS, 2016 (in French).
- Eric Weisstein's World of Mathematics, Decagon.
- Eric Weisstein's World of Mathematics, Golden Ratio Conjugate.
- Index entries for algebraic numbers, degree 2
Programs
-
Mathematica
RealDigits[N[GoldenRatio-1,200]][[1]] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2011*)
-
PARI
default(realprecision, 20080); x=(sqrt(5)-1)/2; d=0; for (n=0, 20000, x=(x-d)*10; d=floor(x); write("b094214.txt", n, " ", d)); \\ Harry J. Smith, Apr 19 2009
-
PARI
(sqrt(5)-1)/2 \\ Michel Marcus, Mar 21 2016
-
PARI
a(n) = floor( 10^(n+1)*(quadgen(5)-1)%10); alist(len) = digits(floor((quadgen(5)-1)*10^len)); \\ Chittaranjan Pardeshi, May 31 2022
Formula
Equals A001622 -1 .
Equals sqrt(2-sqrt(2+sqrt(2-sqrt(2+ ...)))). - Stanislav Sykora, Apr 29 2016
From Christian Katzmann, Mar 19 2018: (Start)
Equals Sum_{n>=0} (15*(2*n)!-8*n!^2)/(2*n!^2*3^(2*n+2)).
Equals -1/2 + Sum_{n>=0} 5*(2*n)!/(2*n!^2*3^(2*n+1)). (End)
Equals i^(4/5) + i^(-4/5). - Gary W. Adamson, Feb 05 2022
From Andrés Ventas, Apr 23 2022: (Start)
Equals (sqrt(5)-1)/2.
Equals 2*sin(Pi/10). (End)
Equals tan(arctan(2)/2). - Amiram Eldar, Jun 29 2023
Positive solution y to y = Integral_{0..1} x^y dx. - Andrea Pinos, Jun 24 2024
Extensions
Edited by Eric W. Weisstein, Apr 17 2006
Comments