cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094214 Decimal expansion of 1/phi = phi - 1.

Original entry on oeis.org

6, 1, 8, 0, 3, 3, 9, 8, 8, 7, 4, 9, 8, 9, 4, 8, 4, 8, 2, 0, 4, 5, 8, 6, 8, 3, 4, 3, 6, 5, 6, 3, 8, 1, 1, 7, 7, 2, 0, 3, 0, 9, 1, 7, 9, 8, 0, 5, 7, 6, 2, 8, 6, 2, 1, 3, 5, 4, 4, 8, 6, 2, 2, 7, 0, 5, 2, 6, 0, 4, 6, 2, 8, 1, 8, 9, 0, 2, 4, 4, 9, 7, 0, 7, 2, 0, 7, 2, 0, 4, 1, 8, 9, 3, 9, 1, 1, 3, 7, 4, 8, 4
Offset: 0

Views

Author

Cino Hilliard, May 27 2004

Keywords

Comments

Edge length of a regular decagon with unit circumradius. - Stanislav Sykora, May 07 2014
The value a+0i is the only invariant point of the complex-plane endomorphism M(z)=sqrt(2-sqrt(2+z)), and also its unique attractor, with the iterations converging exponentially from any starting complex value. Hence the infinite radical formula. - Stanislav Sykora, Apr 29 2016
With a minus sign, this constant is called beta and shares many identities with phi = A001622 (also called alpha); e.g., beta * phi = -1, Lucas numbers L(n) = A000032(n) = phi^n + beta^n. - Andrés Ventas, Apr 23 2022

Examples

			0.6180339887498948482045868343656381177203091798057628621354486227052604628...
		

References

  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 137-138, 178-180, 257.

Crossrefs

Programs

  • Mathematica
    RealDigits[N[GoldenRatio-1,200]][[1]] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2011*)
  • PARI
    default(realprecision, 20080); x=(sqrt(5)-1)/2; d=0; for (n=0, 20000, x=(x-d)*10; d=floor(x); write("b094214.txt", n, " ", d));  \\ Harry J. Smith, Apr 19 2009
    
  • PARI
    (sqrt(5)-1)/2 \\ Michel Marcus, Mar 21 2016
    
  • PARI
    a(n) = floor( 10^(n+1)*(quadgen(5)-1)%10);
    alist(len) = digits(floor((quadgen(5)-1)*10^len)); \\ Chittaranjan Pardeshi, May 31 2022

Formula

Equals A001622 -1 .
Equals sqrt(2-sqrt(2+sqrt(2-sqrt(2+ ...)))). - Stanislav Sykora, Apr 29 2016
From Christian Katzmann, Mar 19 2018: (Start)
Equals Sum_{n>=0} (15*(2*n)!-8*n!^2)/(2*n!^2*3^(2*n+2)).
Equals -1/2 + Sum_{n>=0} 5*(2*n)!/(2*n!^2*3^(2*n+1)). (End)
Equals i^(4/5) + i^(-4/5). - Gary W. Adamson, Feb 05 2022
From Andrés Ventas, Apr 23 2022: (Start)
Equals (sqrt(5)-1)/2.
Equals 2*sin(Pi/10). (End)
Equals tan(arctan(2)/2). - Amiram Eldar, Jun 29 2023
Positive solution y to y = Integral_{0..1} x^y dx. - Andrea Pinos, Jun 24 2024

Extensions

Edited by Eric W. Weisstein, Apr 17 2006