cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 77 results. Next

A134974 Decimal expansion of 4*(-1 + phi) = 4*A094214, where the golden ratio phi = A001622.

Original entry on oeis.org

2, 4, 7, 2, 1, 3, 5, 9, 5, 4, 9, 9, 9, 5, 7, 9, 3, 9, 2, 8, 1, 8, 3, 4, 7, 3, 3, 7, 4, 6, 2, 5, 5, 2, 4, 7, 0, 8, 8, 1, 2, 3, 6, 7, 1, 9, 2, 2, 3, 0, 5, 1, 4, 4, 8, 5, 4, 1, 7, 9, 4, 4, 9, 0, 8, 2, 1, 0, 4, 1, 8, 5, 1, 2, 7, 5, 6, 0, 9, 7, 9, 8, 8, 2, 8, 8
Offset: 1

Views

Author

Omar E. Pol, Nov 15 2007

Keywords

Comments

This equals the dimensionless q-entropy (Tsallis entropy) of the set of 5 probabilities {p_i = 1/5, i = 1..5} for q = 1/2, which is S/k = -(1 - 5*(1/5)^(1/2))/(1 - 1/2) (k is the Boltzmann constant). See the Wikipedia link. - Wolfdieter Lang, Dec 06 2018
This constant - 2 = 2*sqrt(5) - 4 is the area of a regular pentagram formed by connecting the vertices of a unit-area regular pentagon. - Amiram Eldar, Nov 12 2021

Examples

			2.47213595499957939281834733746255247...
		

Crossrefs

Programs

  • Maple
    evalf[100](8/(1+sqrt(5))); # Muniru A Asiru, Dec 19 2018
  • Mathematica
    RealDigits[4/GoldenRatio,10,120][[1]] (* Harvey P. Dale, Oct 30 2016 *)
  • PARI
    2*(sqrt(5)-1) \\ or: digits( % \1e-35). - M. F. Hasler, Dec 14 2018

Formula

Equals 4*(-1 + phi) = 4*A094214, where phi = A001622. This is an integer in the field Q(sqrt(5)).
Equals 4/phi = 8/(1 + sqrt(5)).
Equals 10*A020762-2 = A010476-2. - R. J. Mathar, Oct 27 2008
Equals 2*(sqrt(5) - 1) = 2*A134972. - M. F. Hasler, Dec 14 2018

Extensions

More terms from Harvey P. Dale, Oct 30 2016
Edited by Wolfdieter Lang, Dec 14 2018

A167964 Signature sequence of phi^8 = 0.021286236252208..., where phi is A094214.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1
Offset: 1

Views

Author

Casey Mongoven, Nov 15 2009

Keywords

References

  • Clark Kimberling, "Fractal Sequences and Interspersions," Ars Combinatoria 45 (1997) 157-168.

Programs

  • Mathematica
    terms = 105; m = Ceiling[Sqrt[terms]]; s0 = {}; While[s = (Table[i + j*x, {i, 1, m}, {j, 1, m}] // Flatten // SortBy[#, N[# /. x -> 1/GoldenRatio^8] &] &)[[1 ;; terms]] /. x -> 0; s != s0, s0 = s; m = 2 m]; s (* Jean-François Alcover, Jan 08 2017 *)

A167965 Signature sequence of phi^7 = 0.034441853748633..., where phi is A094214.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3
Offset: 1

Views

Author

Casey Mongoven, Nov 15 2009

Keywords

References

  • Clark Kimberling, "Fractal Sequences and Interspersions," Ars Combinatoria 45 (1997) 157-168.

Programs

  • Mathematica
    terms = 105; m = Ceiling[Sqrt[terms]]; s0 = {}; While[s = (Table[i + j*x, {i, 1, m}, {j, 1, m}] // Flatten // SortBy[#, N[# /. x -> 1/GoldenRatio^7] &] &)[[1 ;; terms]] /. x -> 0; s != s0, s0 = s; m = 2 m]; s (* Jean-François Alcover, Jan 08 2017 *)

A167966 Signature sequence of phi^6 = 0.055728090000841..., where phi is the inverse golden ratio A094214.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1
Offset: 1

Views

Author

Casey Mongoven, Nov 15 2009

Keywords

References

  • Clark Kimberling, "Fractal Sequences and Interspersions," Ars Combinatoria 45 (1997) 157-168.

Crossrefs

Programs

  • Mathematica
    terms = 105; m = Ceiling[Sqrt[terms]]; s0 = {}; While[s = (Table[i + j/GoldenRatio^6, {i, 1, m}, {j, 1, m}] // Flatten // SortBy[#, N] &)[[1 ;; terms]] /. GoldenRatio -> \[Infinity]; s != s0, s0 = s; m = 2 m]; s (* Jean-François Alcover, Jan 08 2017 *)

A167967 Signature sequence of phi^5 = 0.090169943749474..., where phi is the inverse golden ratio A094214.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3
Offset: 1

Views

Author

Casey Mongoven, Nov 15 2009

Keywords

References

  • Clark Kimberling, "Fractal Sequences and Interspersions," Ars Combinatoria 45 (1997) 157-168.

Crossrefs

Programs

  • Mathematica
    terms = 105; m = Ceiling[Sqrt[terms]]; s0 = {}; While[s = (Table[i + j/GoldenRatio^5, {i, 1, m}, {j, 1, m}] // Flatten // SortBy[#, N] &)[[1 ;; terms]] /. GoldenRatio -> \[Infinity]; s != s0, s0 = s; m = 2 m]; s (* Jean-François Alcover, Jan 08 2017 *)

A104457 Decimal expansion of 1 + phi = phi^2 = (3 + sqrt(5))/2.

Original entry on oeis.org

2, 6, 1, 8, 0, 3, 3, 9, 8, 8, 7, 4, 9, 8, 9, 4, 8, 4, 8, 2, 0, 4, 5, 8, 6, 8, 3, 4, 3, 6, 5, 6, 3, 8, 1, 1, 7, 7, 2, 0, 3, 0, 9, 1, 7, 9, 8, 0, 5, 7, 6, 2, 8, 6, 2, 1, 3, 5, 4, 4, 8, 6, 2, 2, 7, 0, 5, 2, 6, 0, 4, 6, 2, 8, 1, 8, 9, 0, 2, 4, 4, 9, 7, 0, 7, 2, 0, 7, 2, 0, 4, 1, 8, 9, 3, 9, 1, 1, 3, 7, 4, 8
Offset: 1

Views

Author

Eric W. Weisstein, Mar 08 2005

Keywords

Comments

Only first term differs from the decimal expansion of phi.
Zelo extends work of D. Roy by showing that the square of the golden ratio is the optimal exponent of approximation by algebraic numbers of degree 4 with bounded denominator and trace. - Jonathan Vos Post, Mar 02 2009 (Cf. last sentence in the Zelo reference. - Joerg Arndt, Jan 04 2014)
Hawkes asks: "What two numbers are those whose product, difference of their squares, and the ratio or quotient of their cubes, are all equal to each other?". - Charles R Greathouse IV, Dec 11 2012
This is the case n=10 in (Gamma(1/n)/Gamma(3/n))*(Gamma((n-1)/n)/Gamma((n-3)/n)) = 1+2*cos(2*Pi/n). - Bruno Berselli, Dec 14 2012
An algebraic integer of degree 2, with minimal polynomial x^2 - 3x + 1. - Charles R Greathouse IV, Nov 12 2014 [The other root is 2 - phi = A132338 - Wolfdieter Lang, Aug 29 2022]
To eight digits: 5*(((Pi+1)/e)-1) = 2.61803395481182... - Dan Graham, Nov 21 2017
The ratio diagonal/side of the second smallest diagonal in a regular 10-gon. - Mohammed Yaseen, Nov 04 2020
phi^2/10 is the moment of inertia of a solid regular icosahedron with a unit mass and a unit edge length (see A341906). - Amiram Eldar, Jun 08 2021

Examples

			2.6180339887498948482045868343656381177203091798...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.17.1, p. 153.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 138-139.
  • Damien Roy. Diophantine Approximation in Small Degree. Centre de Recherches Mathématiques. CRM Proceedings and Lecture Notes. Volume 36 (2004), 269-285.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 45.

Crossrefs

2 + 2*cos(2*Pi/n): A116425 (n = 7), A332438 (n = 9), A296184 (n = 10), A019973 (n = 12).

Programs

Formula

Equals 2 + A094214 = 1 + A001622. - R. J. Mathar, May 19 2008
Satisfies these three equations: x-sqrt(x)-1 = 0; x-1/sqrt(x)-2 = 0; x^2-3*x+1 = 0. - Richard R. Forberg, Oct 11 2014
Equals the nested radical sqrt(phi^2+sqrt(phi^4+sqrt(phi^8+...))). For a proof, see A094885. - Stanislav Sykora, May 24 2016
From Christian Katzmann, Mar 19 2018: (Start)
Equals Sum_{n>=0} (5*(2*n)!+8*n!^2)/(2*n!^2*3^(2*n+1)).
Equals 3/2 + Sum_{n>=0} 5*(2*n)!/(2*n!^2*3^(2*n+1)). (End)
Equals 1/A132338 = 2*A239798 = 5*A229780. - Mohammed Yaseen, Nov 04 2020
Equals Product_{k>=1} 1 + 1/(phi + phi^k), where phi is the golden ratio (A001622) (Ohtsuka, 2018). - Amiram Eldar, Dec 02 2021
c^n = phi * A001906(n) + A001519(n), where c = phi^2. - Gary W. Adamson, Sep 08 2023
Equals lim_{n->oo} S(n, 3)/S(n-1, 3) with the S-Chebyshev polynomials (see A049310), S(3, n) = A000045(2*(n+1)) = A001906(n+1). - Wolfdieter Lang, Nov 15 2023
From Peter Bala, May 08 2024: (Start)
Constant c = 2 + 2*cos(2*Pi/5).
The linear fractional transformation z -> c - c/z has order 5, that is, z = c - c/(c - c/(c - c/(c - c/(c - c/z)))). (End)
Equals Product_{k>=1} (1 + 1/A032908(k)). - Amiram Eldar, Nov 28 2024

A022342 Integers with "even" Zeckendorf expansions (do not end with ...+F_2 = ...+1) (the Fibonacci-even numbers); also, apart from first term, a(n) = Fibonacci successor to n-1.

Original entry on oeis.org

0, 2, 3, 5, 7, 8, 10, 11, 13, 15, 16, 18, 20, 21, 23, 24, 26, 28, 29, 31, 32, 34, 36, 37, 39, 41, 42, 44, 45, 47, 49, 50, 52, 54, 55, 57, 58, 60, 62, 63, 65, 66, 68, 70, 71, 73, 75, 76, 78, 79, 81, 83, 84, 86, 87, 89, 91, 92, 94, 96, 97, 99, 100, 102, 104, 105, 107
Offset: 1

Views

Author

Keywords

Comments

The Zeckendorf expansion of n is obtained by repeatedly subtracting the largest Fibonacci number you can until nothing remains; for example, 100 = 89 + 8 + 3.
The Fibonacci successor to n is found by replacing each F_i in the Zeckendorf expansion by F_{i+1}; for example, the successor to 100 is 144 + 13 + 5 = 162.
If k appears, k + (rank of k) does not (10 is the 7th term in the sequence but 10 + 7 = 17 is not a term of the sequence). - Benoit Cloitre, Jun 18 2002
From Michele Dondi (bik.mido(AT)tiscalenet.it), Dec 30 2001: (Start)
a(n) = Sum_{k in A_n} F_{k+1}, where a(n)= Sum_{k in A_n} F_k is the (unique) expression of n as a sum of "noncontiguous" Fibonacci numbers (with index >= 2).
a(10^n) gives the first few digits of g = (sqrt(5)+1)/2.
The sequences given by b(n+1) = a(b(n)) obey the general recursion law of Fibonacci numbers. In particular the (sub)sequence (of a(-)) yielded by a starting value of 2=a(1), is the sequence of Fibonacci numbers >= 2. Starting points of all such subsequences are given by A035336.
a(n) = floor(phi*n+1/phi); phi = (sqrt(5)+1)/2. a(F_n)=F_{n+1} if F_n is the n-th Fibonacci number.
(End)
From Amiram Eldar, Sep 03 2022: (Start)
Numbers with an even number of trailing 1's in their dual Zeckendorf representation (A104326), i.e., numbers k such that A356749(k) is even.
The asymptotic density of this sequence is 1/phi (A094214). (End)

Examples

			The successors to 1, 2, 3, 4=3+1 are 2, 3, 5, 7=5+2.
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 307-308 of 2nd edition.
  • E. Zeckendorf, Représentation des nombres naturels par une somme des nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Roy. Sci. Liège 41, 179-182, 1972.

Crossrefs

Positions of 0's in A003849.
Complement of A003622.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A000201 as the parent: A000201, A001030, A001468, A001950, A003622, A003842, A003849, A004641, A005614, A014675, A022342, A088462, A096270, A114986, A124841. - N. J. A. Sloane, Mar 11 2021

Programs

  • Haskell
    a022342 n = a022342_list !! (n-1)
    a022342_list = filter ((notElem 1) . a035516_row) [0..]
    -- Reinhard Zumkeller, Mar 10 2013
    
  • Magma
    [Floor(n*(Sqrt(5)+1)/2)-1: n in [1..100]]; // Vincenzo Librandi, Feb 16 2015
    
  • Maple
    A022342 := proc(n)
          local g;
          g := (1+sqrt(5))/2 ;
        floor(n*g)-1 ;
    end proc: # R. J. Mathar, Aug 04 2013
  • Mathematica
    With[{t=GoldenRatio^2},Table[Floor[n*t]-n-1,{n,70}]] (* Harvey P. Dale, Aug 08 2012 *)
  • PARI
    a(n)=floor(n*(sqrt(5)+1)/2)-1
    
  • PARI
    a(n)=(sqrtint(5*n^2)+n-2)\2 \\ Charles R Greathouse IV, Feb 27 2014
    
  • Python
    from math import isqrt
    def A022342(n): return (n+isqrt(5*n**2)>>1)-1 # Chai Wah Wu, Aug 17 2022

Formula

a(n) = floor(n*phi^2) - n - 1 = floor(n*phi) - 1 = A000201(n) - 1, where phi is the golden ratio.
a(n) = A003622(n) - n. - Philippe Deléham, May 03 2004
a(n+1) = A022290(2*A003714(n)). - R. J. Mathar, Jan 31 2015
For n > 1: A035612(a(n)) > 1. - Reinhard Zumkeller, Feb 03 2015
a(n) = A000201(n) - 1. First differences are given in A014675 (or A001468, ignoring its first term). - M. F. Hasler, Oct 13 2017
a(n) = a(n-1) + 1 + A005614(n-2) for n > 1; also a(n) = a(n-1) + A014675(n-2) = a(n-1) + A001468(n-1). - A.H.M. Smeets, Apr 26 2024

Extensions

Name edited by Peter Munn, Dec 07 2021

A003401 Numbers of edges of regular polygons constructible with ruler (or, more precisely, an unmarked straightedge) and compass.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 17, 20, 24, 30, 32, 34, 40, 48, 51, 60, 64, 68, 80, 85, 96, 102, 120, 128, 136, 160, 170, 192, 204, 240, 255, 256, 257, 272, 320, 340, 384, 408, 480, 510, 512, 514, 544, 640, 680, 768, 771, 816, 960, 1020, 1024, 1028, 1088, 1280, 1285
Offset: 1

Views

Author

Keywords

Comments

The terms 1 and 2 correspond to degenerate polygons.
These are also the numbers for which phi(n) is a power of 2: A209229(A000010(a(n))) = 1. - Olivier Gérard Feb 15 1999
From Stanislav Sykora, May 02 2016: (Start)
The sequence can be also defined as follows: (i) 1 is a member. (ii) Double of any member is also a member. (iii) If a member is not divisible by a Fermat prime F_k then its product with F_k is also a member. In particular, the powers of 2 (A000079) are a subset and so are the Fermat primes (A019434), which are the only odd prime members.
The definition is too restrictive (though correct): The Georg Mohr - Lorenzo Mascheroni theorem shows that constructibility using a straightedge and a compass is equivalent to using compass only. Moreover, Jean Victor Poncelet has shown that it is also equivalent to using straightedge and a fixed ('rusty') compass. With the work of Jakob Steiner, this became part of the Poncelet-Steiner theorem establishing the equivalence to using straightedge and a fixed circle (with a known center). A further extension by Francesco Severi replaced the availability of a circle with that of a fixed arc, no matter how small (but still with a known center).
Constructibility implies that when m is a member of this sequence, the edge length 2*sin(Pi/m) of an m-gon with circumradius 1 can be written as a finite expression involving only integer numbers, the four basic arithmetic operations, and the square root. (End)
If x,y are terms, and gcd(x,y) is a power of 2 then x*y is also a term. - David James Sycamore, Aug 24 2024

Examples

			34 is a term of this sequence because a circle can be divided into exactly 34 parts. 7 is not.
		

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 183.
  • Allan Clark, Elements of Abstract Algebra, Chapter 4, Galois Theory, Dover Publications, NY 1984, page 124.
  • Duane W. DeTemple, "Carlyle circles and the Lemoine simplicity of polygon constructions." The American Mathematical Monthly 98.2 (1991): 97-108. - N. J. A. Sloane, Aug 05 2021
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • B. L. van der Waerden, Modern Algebra. Unger, NY, 2nd ed., Vols. 1-2, 1953, Vol. 1, p. 187.

Crossrefs

Subsequence of A295298. - Antti Karttunen, Nov 27 2017
A004729 and A051916 are subsequences. - Reinhard Zumkeller, Mar 20 2010
Cf. A000079, A004169, A000215, A099884, A019434 (Fermat primes).
Edge lengths of other constructible m-gons: A002194 (m=3), A002193 (4), A182007 (5), A101464 (8), A094214 (10), A101263 (12), A272534 (15), A272535 (16), A228787 (17), A272536 (20).
Positions of zeros in A293516 (apart from two initial -1's), and in A336469, positions of ones in A295660 and in A336477 (characteristic function).
Cf. also A046528.

Programs

  • Haskell
    a003401 n = a003401_list !! (n-1)
    a003401_list = map (+ 1) $ elemIndices 1 $ map a209229 a000010_list
    -- Reinhard Zumkeller, Jul 31 2012
    
  • Mathematica
    Select[ Range[ 1300 ], IntegerQ[ Log[ 2, EulerPhi[ # ] ] ]& ] (* Olivier Gérard Feb 15 1999 *)
    (* first do *) Needs["DiscreteMath`Combinatorica`"] (* then *) Take[ Union[ Flatten[ NestList[2# &, Times @@@ Table[ UnrankSubset[n, Join[{1}, Table[2^2^i + 1, {i, 0, 4}]]], {n, 63}], 11]]], 60] (* Robert G. Wilson v, Jun 11 2005 *)
    nn=10; logs=Log[2,{2,3,5,17,257,65537}]; lim2=Floor[nn/logs[[1]]]; Sort[Reap[Do[z={i,j,k,l,m,n}.logs; If[z<=nn, Sow[2^z]], {i,0,lim2}, {j,0,1}, {k,0,1}, {l,0,1}, {m,0,1}, {n,0,1}]][[2,1]]]
    A092506 = {2, 3, 5, 17, 257, 65537}; s = Sort[Times @@@ Subsets@ A092506]; mx = 1300; Union@ Flatten@ Table[(2^n)*s[[i]], {i, 64}, {n, 0, Log2[mx/s[[i]]]}] (* Robert G. Wilson v, Jul 28 2014 *)
  • PARI
    for(n=1,10^4,my(t=eulerphi(n));if(t/2^valuation(t,2)==1,print1(n,", "))); \\ Joerg Arndt, Jul 29 2014
    
  • PARI
    is(n)=n>>=valuation(n,2); if(n<7, return(n>0)); my(k=logint(logint(n,2),2)); if(k>32, my(p=2^2^k+1); if(n%p, return(0)); n/=p; unknown=1; if(n%p==0, return(0)); p=0; if(is(n)==0, 0, "unknown [has large Fermat number in factorization]"), 4294967295%n==0) \\ Charles R Greathouse IV, Jan 09 2022
    
  • PARI
    is(n)=n>>=valuation(n,2); 4294967295%n==0 \\ valid for n <= 2^2^33, conjecturally valid for all n; Charles R Greathouse IV, Jan 09 2022
    
  • Python
    from sympy import totient
    A003401_list = [n for n in range(1,10**4) if format(totient(n),'b').count('1') == 1]
    # Chai Wah Wu, Jan 12 2015

Formula

Terms from 3 onward are computable as numbers such that cototient-of-totient equals the totient-of-totient: Flatten[Position[Table[co[eu[n]]-eu[eu[n]], {n, 1, 10000}], 0]] eu[m]=EulerPhi[m], co[m]=m-eu[m]. - Labos Elemer, Oct 19 2001, clarified by Antti Karttunen, Nov 27 2017
Any product of 2^k and distinct Fermat primes (primes of the form 2^(2^m)+1). - Sergio Pimentel, Apr 30 2004, edited by Franklin T. Adams-Watters, Jun 16 2006
If the well-known conjecture that there are only five prime Fermat numbers F_k=2^{2^k}+1, k=0,1,2,3,4 is true, then we have exactly: Sum_{n>=1} 1/a(n)= 2*Product_{k=0..4} (1+1/F_k) = 4869735552/1431655765 = 3.40147098978.... - Vladimir Shevelev and T. D. Noe, Dec 01 2010
log a(n) >> sqrt(n); if there are finitely many Fermat primes, then log a(n) ~ k log n for some k. - Charles R Greathouse IV, Oct 23 2015

Extensions

Definition clarified by Bill Gosper. - N. J. A. Sloane, Jun 14 2020

A047221 Numbers that are congruent to {2, 3} mod 5.

Original entry on oeis.org

2, 3, 7, 8, 12, 13, 17, 18, 22, 23, 27, 28, 32, 33, 37, 38, 42, 43, 47, 48, 52, 53, 57, 58, 62, 63, 67, 68, 72, 73, 77, 78, 82, 83, 87, 88, 92, 93, 97, 98, 102, 103, 107, 108, 112, 113, 117, 118, 122, 123, 127, 128, 132, 133, 137, 138, 142, 143, 147, 148, 152, 153
Offset: 1

Views

Author

Keywords

Comments

Theorem: if 5^((n-1)/2) = -1 (mod n) then n == 2 or 3 (mod 5) (see Crandall and Pomerance).
Start with 2. The next number, 3, cannot be written as the sum of two of the previous terms. So 3 is in. 4=2+2, 5=2+3, 6=3+3, so these are not in. But you cannot obtain 7, so the next term is 7. And so on. - Fabian Rothelius, Mar 13 2001
Also numbers k such that k^2 == -1 (mod 5). - Vincenzo Librandi, Aug 05 2010
For any (t,s) < n, a(t)*a(s) != a(n) and a(t) - a(s) != a(n). - Anders Hellström, Jul 01 2015
These numbers appear in the product of a Rogers-Ramanujan identity. See A003106 also for references. - Wolfdieter Lang, Oct 29 2016

References

  • Richard Crandall and Carl Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2001; see Exercise 3.24, p. 154.

Crossrefs

Cf. A118015 (floor(n^2/5)).
Cf. A003631 (primes), A094214.
Partitions into: A003106, A219607.

Programs

  • Haskell
    a047221 n = 5 * ((n - 1) `div` 2) + 3 - n `mod` 2
    a047221_list = 2 : 3 : map (+ 5) a047221_list
    -- Reinhard Zumkeller, Nov 27 2012
    
  • Magma
    [ n : n in [1..165] | n mod 5 eq 2 or n mod 5 eq 3 ];
    
  • Mathematica
    {2,3}+#&/@(5 Range[0,30])//Flatten (* Harvey P. Dale, Jan 22 2023 *)
  • PARI
    Vec(x*(2+x+2*x^2)/((1+x)*(1-x)^2) + O(x^80)) \\ Michel Marcus, Jun 30 2015

Formula

a(n) = 5*(n-1) - a(n-1) (with a(1)=2). - Vincenzo Librandi, Aug 05 2010
a(n) = (10*n - 3*(-1)^n - 5)/4.
G.f.: x*(2+x+2*x^2)/((1+x)*(1-x)^2).
a(n)^2 = 5*A118015(a(n)) + 4.
a(n) = 5 * (floor(n-1)/2) + 3 - n mod 2. - Reinhard Zumkeller, Nov 27 2012
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(1-2/sqrt(5))*Pi/5. - Amiram Eldar, Dec 07 2021
E.g.f.: 2 + ((5*x - 5/2)*exp(x) - (3/2)*exp(-x))/2. - David Lovler, Aug 23 2022
From Amiram Eldar, Nov 22 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = 1.
Product_{n>=1} (1 + (-1)^n/a(n)) = 1/phi (A094214). (End)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Apr 08 2002
Closed formula, g.f. and link added by Bruno Berselli, Nov 28 2010

A019863 Decimal expansion of sin(3*Pi/10) (sine of 54 degrees, or cosine of 36 degrees).

Original entry on oeis.org

8, 0, 9, 0, 1, 6, 9, 9, 4, 3, 7, 4, 9, 4, 7, 4, 2, 4, 1, 0, 2, 2, 9, 3, 4, 1, 7, 1, 8, 2, 8, 1, 9, 0, 5, 8, 8, 6, 0, 1, 5, 4, 5, 8, 9, 9, 0, 2, 8, 8, 1, 4, 3, 1, 0, 6, 7, 7, 2, 4, 3, 1, 1, 3, 5, 2, 6, 3, 0, 2, 3, 1, 4, 0, 9, 4, 5, 1, 2, 2, 4, 8, 5, 3, 6, 0, 3, 6, 0, 2, 0, 9, 4, 6, 9, 5, 5, 6, 8
Offset: 0

Views

Author

Keywords

Comments

Midsphere radius of regular icosahedron with unit edges.
Also half of the golden ratio (A001622). - Stanislav Sykora, Jan 30 2014
Andris Ambainis (see Aaronson link) observes that combining the results of Barak-Hardt-Haviv-Rao with Dinur-Steurer yields the maximal probability of winning n parallel repetitions of a classical CHSH game (see A201488) asymptotic to this constant to the power of n, an improvement on the naive probability of (3/4)^n. (All the random bits are received upfront but the players cannot communicate or share an entangled state.) - Charles R Greathouse IV, May 15 2014
This is the height h of the isosceles triangle in a regular pentagon, in length units of the circumscribing radius, formed by a side as base and two adjacent radii. h = sin(3*Pi/10) = cos(Pi/5) (radius 1 unit). - Wolfdieter Lang, Jan 08 2018
Also the limiting value(L) of "r" which is abscissa of the vertex of the parabola F(n)*x^2 - F(n+1)*x + F(n + 2)(where F(n)=A000045(n) are the Fibonacci numbers and n>0). - Burak Muslu, Feb 24 2021

Examples

			0.80901699437494742410229341718281905886015458990288143106772431135263...
		

Crossrefs

Platonic solids midradii: A020765 (tetrahedron), A020761 (octahedron), A010503 (cube), A239798 (dodecahedron).

Programs

Formula

Equals (1+sqrt(5))/4 = cos(Pi/5) = sin(3*Pi/10). - R. J. Mathar, Jun 18 2006
Equals 2F1(4/5,1/5;1/2;3/4) / 2 = A019827 + 1/2. - R. J. Mathar, Oct 27 2008
Equals A001622 / 2. - Stanislav Sykora, Jan 30 2014
phi / 2 = (i^(2/5) + i^(-2/5)) / 2 = i^(2/5) - (sin(Pi/5))*i = i^(-2/5) + (sin(Pi/5))*i = i^(2/5) - (cos(3*Pi/10))*i = i^(-2/5) + (cos(3*Pi/10))*i. - Jaroslav Krizek, Feb 03 2014
Equals 1/A134972. - R. J. Mathar, Jan 17 2021
Equals 2*A019836*A019872. - R. J. Mathar, Jan 17 2021
Equals (A094214 + 1)/2 or 1/(2*A094214). - Burak Muslu, Feb 24 2021
Equals hypergeom([-2/5, -3/5], [6/5], -1) = hypergeom([-1/5, 3/5], [6/5], 1) = hypergeom([1/5, -3/5], [4/5], 1). - Peter Bala, Mar 04 2022
Equals Product_{k>=1} (1 - (-1)^k/A001611(k)). - Amiram Eldar, Nov 28 2024
Equals 2*A134944 = 3*A134946 = A187426-11/10 = A296182-1. - Hugo Pfoertner, Nov 28 2024
Equals A134945/4. Root of 4*x^2-2*x-1=0. - R. J. Mathar, Aug 29 2025
Showing 1-10 of 77 results. Next