cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 36 results. Next

A191729 Dispersion of A047221, (numbers >1 and congruent to 2 or 3 mod 5), by antidiagonals.

Original entry on oeis.org

1, 2, 4, 3, 8, 5, 7, 18, 12, 6, 17, 43, 28, 13, 9, 42, 107, 68, 32, 22, 10, 103, 267, 168, 78, 53, 23, 11, 257, 667, 418, 193, 132, 57, 27, 14, 642, 1667, 1043, 482, 328, 142, 67, 33, 15, 1603, 4167, 2607, 1203, 818, 353, 167, 82, 37, 16, 4007, 10417, 6517
Offset: 1

Views

Author

Clark Kimberling, Jun 13 2011

Keywords

Comments

For a background discussion of dispersions and their fractal sequences, see A191426. For dispersions of congruence sequences mod 3, mod 4, or mod 5, see A191655, A191663, A191667, A191702.
...
Suppose that {2,3,4,5,6} is partitioned as {x1, x2} and {x3,x4,x5}. Let S be the increasing sequence of numbers >1 and congruent to x1 or x2 mod 5, and let T be the increasing sequence of numbers >1 and congruent to x3 or x4 or x5 mod 5. There are 10 sequences in S, each matched by a (nearly) complementary sequence in T. Each of the 20 sequences generates a dispersion, as listed here:
...
A191722=dispersion of A008851 (0, 1 mod 5 and >1)
A191723=dispersion of A047215 (0, 2 mod 5 and >1)
A191724=dispersion of A047218 (0, 3 mod 5 and >1)
A191725=dispersion of A047208 (0, 4 mod 5 and >1)
A191726=dispersion of A047216 (1, 2 mod 5 and >1)
A191727=dispersion of A047219 (1, 3 mod 5 and >1)
A191728=dispersion of A047209 (1, 4 mod 5 and >1)
A191729=dispersion of A047221 (2, 3 mod 5 and >1)
A191730=dispersion of A047211 (2, 4 mod 5 and >1)
A191731=dispersion of A047204 (3, 4 mod 5 and >1)
...
A191732=dispersion of A047202 (2,3,4 mod 5 and >1)
A191733=dispersion of A047206 (1,3,4 mod 5 and >1)
A191734=dispersion of A032793 (1,2,4 mod 5 and >1)
A191735=dispersion of A047223 (1,2,3 mod 5 and >1)
A191736=dispersion of A047205 (0,3,4 mod 5 and >1)
A191737=dispersion of A047212 (0,2,4 mod 5 and >1)
A191738=dispersion of A047222 (0,2,3 mod 5 and >1)
A191739=dispersion of A008854 (0,1,4 mod 5 and >1)
A191740=dispersion of A047220 (0,1,3 mod 5 and >1)
A191741=dispersion of A047217 (0,1,2 mod 5 and >1)
...
For further information about these 20 dispersions, see A191722.
...
Regarding the dispersions A191722-A191741, there are general formulas for sequences of the type "(a or b mod m)" and "(a or b or c mod m)" used in the relevant Mathematica programs.

Examples

			Northwest corner:
1....2....3....7.....17
4....8....18...43....107
5....12...28...68....168
6....13...32...78....193
9....22...53...132...328
10...23...57...142...353
		

Crossrefs

Programs

  • Mathematica
    (* Program generates the dispersion array t of the increasing sequence f[n] *)
    r = 40; r1 = 12;  c = 40; c1 = 12;
    a=2; b=3; m[n_]:=If[Mod[n,2]==0,1,0];
    f[n_]:=a*m[n+1]+b*m[n]+5*Floor[(n-1)/2]
    Table[f[n], {n, 1, 30}]  (* A047221 *)
    mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191729 *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191729  *)

A001622 Decimal expansion of golden ratio phi (or tau) = (1 + sqrt(5))/2.

Original entry on oeis.org

1, 6, 1, 8, 0, 3, 3, 9, 8, 8, 7, 4, 9, 8, 9, 4, 8, 4, 8, 2, 0, 4, 5, 8, 6, 8, 3, 4, 3, 6, 5, 6, 3, 8, 1, 1, 7, 7, 2, 0, 3, 0, 9, 1, 7, 9, 8, 0, 5, 7, 6, 2, 8, 6, 2, 1, 3, 5, 4, 4, 8, 6, 2, 2, 7, 0, 5, 2, 6, 0, 4, 6, 2, 8, 1, 8, 9, 0, 2, 4, 4, 9, 7, 0, 7, 2, 0, 7, 2, 0, 4, 1, 8, 9, 3, 9, 1, 1, 3, 7, 4, 8, 4, 7, 5
Offset: 1

Views

Author

Keywords

Comments

Also decimal expansion of the positive root of (x+1)^n - x^(2n). (x+1)^n - x^(2n) = 0 has only two real roots x1 = -(sqrt(5)-1)/2 and x2 = (sqrt(5)+1)/2 for all n > 0. - Cino Hilliard, May 27 2004
The golden ratio phi is the most irrational among irrational numbers; its successive continued fraction convergents F(n+1)/F(n) are the slowest to approximate to its actual value (I. Stewart, in "Nature's Numbers", Basic Books, 1997). - Lekraj Beedassy, Jan 21 2005
Let t=golden ratio. The lesser sqrt(5)-contraction rectangle has shape t-1, and the greater sqrt(5)-contraction rectangle has shape t. For definitions of shape and contraction rectangles, see A188739. - Clark Kimberling, Apr 16 2011
The golden ratio (often denoted by phi or tau) is the shape (i.e., length/width) of the golden rectangle, which has the special property that removal of a square from one end leaves a rectangle of the same shape as the original rectangle. Analogously, removals of certain isosceles triangles characterize side-golden and angle-golden triangles. Repeated removals in these configurations result in infinite partitions of golden rectangles and triangles into squares or isosceles triangles so as to match the continued fraction, [1,1,1,1,1,...] of tau. For the special shape of rectangle which partitions into golden rectangles so as to match the continued fraction [tau, tau, tau, ...], see A188635. For other rectangular shapes which depend on tau, see A189970, A190177, A190179, A180182. For triangular shapes which depend on tau, see A152149 and A188594; for tetrahedral, see A178988. - Clark Kimberling, May 06 2011
Given a pentagon ABCDE, 1/(phi)^2 <= (A*C^2 + C*E^2 + E*B^2 + B*D^2 + D*A^2) / (A*B^2 + B*C^2 + C*D^2 + D*E^2 + E*A^2) <= (phi)^2. - Seiichi Kirikami, Aug 18 2011
If a triangle has sides whose lengths form a geometric progression in the ratio of 1:r:r^2 then the triangle inequality condition requires that r be in the range 1/phi < r < phi. - Frank M Jackson, Oct 12 2011
The graphs of x-y=1 and x*y=1 meet at (tau,1/tau). - Clark Kimberling, Oct 19 2011
Also decimal expansion of the first root of x^sqrt(x+1) = sqrt(x+1)^x. - Michel Lagneau, Dec 02 2011
Also decimal expansion of the root of (1/x)^(1/sqrt(x+1)) = (1/sqrt(x+1))^(1/x). - Michel Lagneau, Apr 17 2012
This is the case n=5 of (Gamma(1/n)/Gamma(3/n))*(Gamma((n-1)/n)/Gamma((n-3)/n)): (1+sqrt(5))/2 = (Gamma(1/5)/Gamma(3/5))*(Gamma(4/5)/Gamma(2/5)). - Bruno Berselli, Dec 14 2012
Also decimal expansion of the only number x>1 such that (x^x)^(x^x) = (x^(x^x))^x = x^((x^x)^x). - Jaroslav Krizek, Feb 01 2014
For n >= 1, round(phi^prime(n)) == 1 (mod prime(n)) and, for n >= 3, round(phi^prime(n)) == 1 (mod 2*prime(n)). - Vladimir Shevelev, Mar 21 2014
The continuous radical sqrt(1+sqrt(1+sqrt(1+...))) tends to phi. - Giovanni Zedda, Jun 22 2019
Equals sqrt(2+sqrt(2-sqrt(2+sqrt(2-...)))). - Diego Rattaggi, Apr 17 2021
Given any complex p such that real(p) > -1, phi is the only real solution of the equation z^p+z^(p+1)=z^(p+2), and the only attractor of the complex mapping z->M(z,p), where M(z,p)=(z^p+z^(p+1))^(1/(p+2)), convergent from any complex plane point. - Stanislav Sykora, Oct 14 2021
The only positive number such that its decimal part, its integral part and the number itself (x-[x], [x] and x) form a geometric progression is phi, with respectively (phi -1, 1, phi) and a ratio = phi. This is the answer to the 4th problem of the 7th Canadian Mathematical Olympiad in 1975 (see IMO link and Doob reference). - Bernard Schott, Dec 08 2021
The golden ratio is the unique number x such that f(n*x)*c(n/x) - f(n/x)*c(n*x) = n for all n >= 1, where f = floor and c = ceiling. - Clark Kimberling, Jan 04 2022
In The Second Scientific American Book Of Mathematical Puzzles and Diversions, Martin Gardner wrote that, by 1910, Mark Barr (1871-1950) gave phi as a symbol for the golden ratio. - Bernard Schott, May 01 2022
Phi is the length of the equal legs of an isosceles triangle with side c = phi^2, and internal angles (A,B) = 36 degrees, C = 108 degrees. - Gary W. Adamson, Jun 20 2022
The positive solution to x^2 - x - 1 = 0. - Michal Paulovic, Jan 16 2023
The minimal polynomial of phi^n, for nonvanishing integer n, is P(n, x) = x^2 - L(n)*x + (-1)^n, with the Lucas numbers L = A000032, extended to negative arguments with L(n) = (-1)^n*L(n). P(0, x) = (x - 1)^2 is not minimal. - Wolfdieter Lang, Feb 20 2025
This is the largest real zero x of (x^4 + x^2 + 1)^2 = 2*(x^8 + x^4 + 1). - Thomas Ordowski, May 14 2025

Examples

			1.6180339887498948482045868343656381177203091798057628621...
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 24, 112, 123, 184, 190, 203.
  • Michael Doob, The Canadian Mathematical Olympiad & L'Olympiade Mathématique du Canada 1969-1993 - Canadian Mathematical Society & Société Mathématique du Canada, Problem 4, 1975, pages 76-77, 1993.
  • Richard A. Dunlap, The Golden Ratio and Fibonacci Numbers, World Scientific, River Edge, NJ, 1997.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, Vol. 94, Cambridge University Press, 2003, Section 1.2.
  • Martin Gardner, The Second Scientific American Book Of Mathematical Puzzles and Diversions, "Phi: The Golden Ratio", Chapter 8, Simon & Schuster, NY, 1961.
  • Martin Gardner, Weird Water and Fuzzy Logic: More Notes of a Fringe Watcher, "The Cult of the Golden Ratio", Chapter 9, Prometheus Books, 1996, pages 90-97.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.5 The Fibonacci and Related Sequences, p. 287.
  • H. E. Huntley, The Divine Proportion, Dover, NY, 1970.
  • Mario Livio, The Golden Ratio, Broadway Books, NY, 2002. [see the review by G. Markowsky in the links field]
  • Gary B. Meisner, The Golden Ratio: The Divine Beauty of Mathematics, Race Point Publishing (The Quarto Group), 2018. German translation: Der Goldene Schnitt, Librero, 2023.
  • Scott Olsen, The Golden Section, Walker & Co., NY, 2006.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 137-139.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Hans Walser, The Golden Section, Math. Assoc. of Amer. Washington DC 2001.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See pp. 36-40.
  • Claude-Jacques Willard, Le nombre d'or, Magnard, Paris, 1987.

Crossrefs

Programs

  • Maple
    Digits:=1000; evalf((1+sqrt(5))/2); # Wesley Ivan Hurt, Nov 01 2013
  • Mathematica
    RealDigits[(1 + Sqrt[5])/2, 10, 130] (* Stefan Steinerberger, Apr 02 2006 *)
    RealDigits[ Exp[ ArcSinh[1/2]], 10, 111][[1]] (* Robert G. Wilson v, Mar 01 2008 *)
    RealDigits[GoldenRatio,10,120][[1]] (* Harvey P. Dale, Oct 28 2015 *)
  • PARI
    default(realprecision, 20080); x=(1+sqrt(5))/2; for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b001622.txt", n, " ", d));  \\ Harry J. Smith, Apr 19 2009
    
  • PARI
    /* Digit-by-digit method: write it as 0.5+sqrt(1.25) and start at hundredths digit */
    r=11; x=400; print(1); print(6);
    for(dig=1, 110, {d=0; while((20*r+d)*d <= x, d++);
    d--; /* while loop overshoots correct digit */
    print(d); x=100*(x-(20*r+d)*d); r=10*r+d})
    \\ Michael B. Porter, Oct 24 2009
    
  • PARI
    a(n) = floor(10^(n-1)*(quadgen(5))%10);
    alist(len) = digits(floor(quadgen(5)*10^(len-1))); \\ Chittaranjan Pardeshi, Jun 22 2022
    
  • Python
    from sympy import S
    def alst(n): # truncate extra last digit to avoid rounding
      return list(map(int, str(S.GoldenRatio.n(n+1)).replace(".", "")))[:-1]
    print(alst(105)) # Michael S. Branicky, Jan 06 2021

Formula

Equals Sum_{n>=2} 1/A064170(n) = 1/1 + 1/2 + 1/(2*5) + 1/(5*13) + 1/(13*34) + ... - Gary W. Adamson, Dec 15 2007
Equals Hypergeometric2F1([1/5, 4/5], [1/2], 3/4) = 2*cos((3/5)*arcsin(sqrt(3/4))). - Artur Jasinski, Oct 26 2008
From Hieronymus Fischer, Jan 02 2009: (Start)
The fractional part of phi^n equals phi^(-n), if n is odd. For even n, the fractional part of phi^n is equal to 1-phi^(-n).
General formula: Provided x>1 satisfies x-x^(-1)=floor(x), where x=phi for this sequence, then:
for odd n: x^n - x^(-n) = floor(x^n), hence fract(x^n) = x^(-n),
for even n: x^n + x^(-n) = ceiling(x^n), hence fract(x^n) = 1 - x^(-n),
for all n>0: x^n + (-x)^(-n) = round(x^n).
x=phi is the minimal solution to x - x^(-1) = floor(x) (where floor(x)=1 in this case).
Other examples of constants x satisfying the relation x - x^(-1) = floor(x) include A014176 (the silver ratio: where floor(x)=2) and A098316 (the "bronze" ratio: where floor(x)=3). (End)
Equals 2*cos(Pi/5) = e^(i*Pi/5) + e^(-i*Pi/5). - Eric Desbiaux, Mar 19 2010
The solutions to x-x^(-1)=floor(x) are determined by x=(1/2)*(m+sqrt(m^2+4)), m>=1; x=phi for m=1. In terms of continued fractions the solutions can be described by x=[m;m,m,m,...], where m=1 for x=phi, and m=2 for the silver ratio A014176, and m=3 for the bronze ratio A098316. - Hieronymus Fischer, Oct 20 2010
Sum_{n>=1} x^n/n^2 = Pi^2/10 - (log(2)*sin(Pi/10))^2 where x = 2*sin(Pi/10) = this constant here. [Jolley, eq 360d]
phi = 1 + Sum_{k>=1} (-1)^(k-1)/(F(k)*F(k+1)), where F(n) is the n-th Fibonacci number (A000045). Proof. By Catalan's identity, F^2(n) - F(n-1)*F(n+1) = (-1)^(n-1). Therefore,(-1)^(n-1)/(F(n)*F(n+1)) = F(n)/F(n+1) - F(n-1)/F(n). Thus Sum_{k=1..n} (-1)^(k-1)/(F(k)*F(k+1)) = F(n)/F(n+1). If n goes to infinity, this tends to 1/phi = phi - 1. - Vladimir Shevelev, Feb 22 2013
phi^n = (A000032(n) + A000045(n)*sqrt(5)) / 2. - Thomas Ordowski, Jun 09 2013
Let P(q) = Product_{k>=1} (1 + q^(2*k-1)) (the g.f. of A000700), then A001622 = exp(Pi/6) * P(exp(-5*Pi)) / P(exp(-Pi)). - Stephen Beathard, Oct 06 2013
phi = i^(2/5) + i^(-2/5) = ((i^(4/5))+1) / (i^(2/5)) = 2*(i^(2/5) - (sin(Pi/5))i) = 2*(i^(-2/5) + (sin(Pi/5))i). - Jaroslav Krizek, Feb 03 2014
phi = sqrt(2/(3 - sqrt(5))) = sqrt(2)/A094883. This follows from the fact that ((1 + sqrt(5))^2)*(3 - sqrt(5)) = 8, so that ((1 + sqrt(5))/2)^2 = 2/(3 - sqrt(5)). - Geoffrey Caveney, Apr 19 2014
exp(arcsinh(cos(Pi/2-log(phi)*i))) = exp(arcsinh(sin(log(phi)*i))) = (sqrt(3) + i) / 2. - Geoffrey Caveney, Apr 23 2014
exp(arcsinh(cos(Pi/3))) = phi. - Geoffrey Caveney, Apr 23 2014
cos(Pi/3) + sqrt(1 + cos(Pi/3)^2). - Geoffrey Caveney, Apr 23 2014
2*phi = z^0 + z^1 - z^2 - z^3 + z^4, where z = exp(2*Pi*i/5). See the Wikipedia Kronecker-Weber theorem link. - Jonathan Sondow, Apr 24 2014
phi = 1/2 + sqrt(1 + (1/2)^2). - Geoffrey Caveney, Apr 25 2014
Phi is the limiting value of the iteration of x -> sqrt(1+x) on initial value a >= -1. - Chayim Lowen, Aug 30 2015
From Isaac Saffold, Feb 28 2018: (Start)
1 = Sum_{k=0..n} binomial(n, k) / phi^(n+k) for all nonnegative integers n.
1 = Sum_{n>=1} 1 / phi^(2n-1).
1 = Sum_{n>=2} 1 / phi^n.
phi = Sum_{n>=1} 1/phi^n. (End)
From Christian Katzmann, Mar 19 2018: (Start)
phi = Sum_{n>=0} (15*(2*n)! + 8*n!^2)/(2*n!^2*3^(2*n+2)).
phi = 1/2 + Sum_{n>=0} 5*(2*n)!/(2*n!^2*3^(2*n+1)). (End)
phi = Product_{k>=1} (1 + 2/(-1 + 2^k*(sqrt(4+(1-2/2^k)^2) + sqrt(4+(1-1/2^k)^2)))). - Gleb Koloskov, Jul 14 2021
Equals Product_{k>=1} (Fibonacci(3*k)^2 + (-1)^(k+1))/(Fibonacci(3*k)^2 + (-1)^k) (Melham and Shannon, 1995). - Amiram Eldar, Jan 15 2022
From Michal Paulovic, Jan 16 2023: (Start)
Equals the real part of 2 * e^(i * Pi / 5).
Equals 2 * sin(3 * Pi / 10) = 2*A019863.
Equals -2 * sin(37 * Pi / 10).
Equals 1 + 1 / (1 + 1 / (1 + 1 / (1 + 1 / (1 + 1 / ...)))).
Equals (2 + 3 * (2 + 3 * (2 + 3 * ...)^(1/4))^(1/4))^(1/4).
Equals (1 + 2 * (1 + 2 * (1 + 2 * ...)^(1/3))^(1/3))^(1/3).
Equals (1 + phi + (1 + phi + (1 + phi + ...)^(1/3))^(1/3))^(1/3).
Equals 13/8 + Sum_{k=0..oo} (-1)^(k+1)*(2*k+1)!/((k+2)!*k!*4^(2*k+3)).
(End)
phi^n = phi * A000045(n) + A000045(n-1). - Gary W. Adamson, Sep 09 2023
The previous formula holds for integer n, with F(-n) = (-1)^(n+1)*F(n), for n >= 0, with F(n) = A000045(n), for n >= 0. phi^n are integers in the quadratic number field Q(sqrt(5)). - Wolfdieter Lang, Sep 16 2023
Equals Product_{k>=0} ((5*k + 2)*(5*k + 3))/((5*k + 1)*(5*k + 4)). - Antonio Graciá Llorente, Feb 24 2024
From Antonio Graciá Llorente, Apr 21 2024: (Start)
Equals Product_{k>=1} phi^(-2^k) + 1, with phi = A001622.
Equals Product_{k>=0} ((5^(k+1) + 1)*(5^(k-1/2) + 1))/((5^k + 1)*(5^(k+1/2) + 1)).
Equals Product_{k>=1} 1 - (4*(-1)^k)/(10*k - 5 + (-1)^k) = Product_{k>=1} A047221(k)/A047209(k).
Equals Product_{k>=0} ((5*k + 7)*(5*k + 1 + (-1)^k))/((5*k + 1)*(5*k + 7 + (-1)^k)).
Equals Product_{k>=0} ((10*k + 3)*(10*k + 5)*(10*k + 8)^2)/((10*k + 2)*(10*k + 4)*(10*k + 9)^2).
Equals Product_{k>=5} 1 + 1/(Fibonacci(k) - (-1)^k).
Equals Product_{k>=2} 1 + 1/Fibonacci(2*k).
Equals Product_{k>=2} (Lucas(k)^2 + (-1)^k)/(Lucas(k)^2 - 4*(-1)^k). (End)

Extensions

Additional links contributed by Lekraj Beedassy, Dec 23 2003
More terms from Gabriel Cunningham (gcasey(AT)mit.edu), Oct 24 2004
More terms from Stefan Steinerberger, Apr 02 2006
Broken URL to Project Gutenberg replaced by Georg Fischer, Jan 03 2009
Edited by M. F. Hasler, Feb 24 2014

A016825 Positive integers congruent to 2 (mod 4): a(n) = 4*n+2, for n >= 0.

Original entry on oeis.org

2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98, 102, 106, 110, 114, 118, 122, 126, 130, 134, 138, 142, 146, 150, 154, 158, 162, 166, 170, 174, 178, 182, 186, 190, 194, 198, 202, 206, 210, 214, 218, 222, 226, 230, 234
Offset: 0

Views

Author

Keywords

Comments

Twice the odd numbers, also called singly even numbers.
Numbers having equal numbers of odd and even divisors: A001227(a(n)) = A000005(2*a(n)). - Reinhard Zumkeller, Dec 28 2003
Continued fraction for coth(1/2) = (e+1)/(e-1). The continued fraction for tanh(1/2) = (e-1)/(e+1) would be a(0) = 0, a(n) = A016825(n-1), n >= 1.
No solutions to a(n) = b^2 - c^2. - Henry Bottomley, Jan 13 2001
Sequence gives m such that 8 is the largest power of 2 dividing A003629(k)^m-1 for any k. - Benoit Cloitre, Apr 05 2002
k such that Sum_{d|k} (-1)^d = A048272(k) = 0. - Benoit Cloitre, Apr 15 2002
Also k such that Sum_{d|k} phi(d)*mu(k/d) = A007431(k) = 0. - Benoit Cloitre, Apr 15 2002
Also k such that Sum_{d|k} (d/A000005(d))*mu(k/d) = 0, k such that Sum_{d|k}(A000005(d)/d)*mu(k/d) = 0. - Benoit Cloitre, Apr 19 2002
Solutions to phi(x) = phi(x/2); primorial numbers are here. - Labos Elemer, Dec 16 2002
Together with 1, numbers that are not the leg of a primitive Pythagorean triangle. - Lekraj Beedassy, Nov 25 2003
For n > 0: complement of A107750 and A023416(a(n)-1) = A023416(a(n)) <> A023416(a(n)+1). - Reinhard Zumkeller, May 23 2005
Also the minimal value of Sum_{i=1..n+2} (p(i) - p(i+1))^2, where p(n+3) = p(1), as p ranges over all permutations of {1,2,...,n+2} (see the Mihai reference). Example: a(2)=10 because the values of the sum for the permutations of {1,2,3,4} are 10 (8 times), 12 (8 times) and 18 (8 times). - Emeric Deutsch, Jul 30 2005
Except for a(n)=2, numbers having 4 as an anti-divisor. - Alexandre Wajnberg, Oct 02 2005
A139391(a(n)) = A006370(a(n)) = A005408(n). - Reinhard Zumkeller, Apr 17 2008
Also a(n) = (n-1) + n + (n+1) + (n+2), so a(n) and -a(n) are all the integers that are sums of four consecutive integers. - Rick L. Shepherd, Mar 21 2009
The denominator in Pi/8 = 1/2 - 1/6 + 1/10 - 1/14 + 1/18 - 1/22 + .... - Mohammad K. Azarian, Oct 13 2011
This sequence gives the positive zeros of i^x + 1 = 0, x real, where i^x = exp(i*x*Pi/2). - Ilya Gutkovskiy, Aug 08 2015
Numbers k such that Sum_{j=1..k} j^3 is not a multiple of k. - Chai Wah Wu, Aug 23 2017
Numbers k such that Lucas(k) is a multiple of 3. - Bruno Berselli, Oct 17 2017
Also numbers k such that t^k == -1 (mod 5), where t is a term of A047221. - Bruno Berselli, Dec 28 2017
The even numbers form a ring, and these are the primes in that ring. Note that unique factorization into primes does not hold, since 60 = 2*30 = 6*10. - N. J. A. Sloane, Nov 11 2019
Also numbers ending with 10 in base 2. - John Keith, May 09 2022

Examples

			0.4621171572600097585023184... = 0 + 1/(2 + 1/(6 + 1/(10 + 1/(14 + ...)))), i.e., c.f. for tanh(1/2).
2.1639534137386528487700040... = 2 + 1/(6 + 1/(10 + 1/(14 + 1/(18 + ...)))), i.e., c.f. for coth(1/2).
		

References

  • H. Bass, Mathematics, Mathematicians and Mathematics Education, Bull. Amer. Math. Soc. (N.S.) 42 (2004), no. 4, 417-430.
  • Arthur Beiser, Concepts of Modern Physics, 2nd Ed., McGraw-Hill, 1973.
  • J. R. Goldman, The Queen of Mathematics, 1998, p. 70.
  • Granino A. Korn and Theresa M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill Book Company, New York (1968).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 262, 278.

Crossrefs

First differences of A001105.
Cf. A160327 (decimal expansion).
Subsequence of A042963.
Essentially the complement of A042965.

Programs

Formula

a(n) = 4*n + 2, for n >= 0.
a(n) = 2*A005408(n). - Lekraj Beedassy, Nov 28 2003
a(n) = A118413(n+1,2) for n>1. - Reinhard Zumkeller, Apr 27 2006
From Michael Somos, Apr 11 2007: (Start)
G.f.: 2*(1+x)/(1-x)^2.
E.g.f.: 2*(1+2*x)*exp(x).
a(n) = a(n-1) + 4.
a(-1-n) = -a(n). (End)
a(n) = 8*n - a(n-1) for n > 0, a(0)=2. - Vincenzo Librandi, Nov 20 2010
From Reinhard Zumkeller, Jun 11 2012, Jun 30 2012 and Jul 20 2012: (Start)
A080736(a(n)) = 0.
A007814(a(n)) = 1;
A037227(a(n)) = 3.
A214546(a(n)) = 0. (End)
a(n) = T(n+2) - T(n-2) where T(n) = n*(n+1)/2 = A000217(n). In general, if M(k,n) = 2*k*n + k, then M(k,n) = T(n+k) - T(n-k). - Charlie Marion, Feb 24 2020
From Amiram Eldar, Nov 22 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = 1/sqrt(2-sqrt(2)) (A285871).
Product_{n>=1} (1 + (-1)^n/a(n)) = sqrt(1-1/sqrt(2)) (A154739). (End)

A003106 Number of partitions of n into parts 5k+2 or 5k+3.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 6, 6, 8, 9, 11, 12, 15, 16, 20, 22, 26, 29, 35, 38, 45, 50, 58, 64, 75, 82, 95, 105, 120, 133, 152, 167, 190, 210, 237, 261, 295, 324, 364, 401, 448, 493, 551, 604, 673, 739, 820, 899, 997, 1091, 1207, 1321, 1457, 1593, 1756, 1916, 2108, 2301
Offset: 0

Views

Author

Keywords

Comments

Expansion of Rogers-Ramanujan function H(x) in powers of x.
Also number of partitions of n such that the number of parts is greater by one than the smallest part. - Vladeta Jovovic, Mar 04 2006
Example: a(10)=4 because we have [9, 1], [6, 2, 2], [5, 3, 2] and [4, 4, 2]. - Emeric Deutsch, Apr 09 2006
Also number of partitions of n such that if the largest part is k, then there are exactly k-1 parts equal to k. Example: a(10)=4 because we have [3, 3, 2, 2], [3, 3, 2, 1, 1], [3, 3, 1, 1, 1, 1] and [2, 1, 1, 1, 1, 1, 1, 1, 1]. - Emeric Deutsch, Apr 09 2006
Also number of partitions of n such that if the largest part is k, then k occurs at least k+1 times. Example: a(10)=4 because we have [2, 2, 2, 2, 2], [2, 2, 2, 2, 1, 1], [2, 2, 2, 1, 1, 1, 1] and [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]. - Emeric Deutsch, Apr 09 2006
Also number of partitions of n such that the smallest part is larger than the number of parts. Example: a(10)=4 because we have [10], [7, 3], [6, 4] and [5, 5]. - Emeric Deutsch, Apr 09 2006
Also number of partitions into distinct parts where parts differ by at least 2 and with minimal part >= 2, a(0)=1 because the condition is void for the empty list. - Joerg Arndt, Jan 04 2011
The g.f. is the special case D=2 of Sum_{n>=0} x^(D*n*(n+1)/2) / Product_{k=1..n} (1-x^k), the g.f. or partitions into distinct parts where the difference between successive parts is >= D and the minimal part >= D. - Joerg Arndt, Mar 31 2014
For more about the generalized Rogers-Ramanujan series G[i](x) see the Andrews-Baxter and Lepowsky-Zhu papers. The present series is G[2](x). - N. J. A. Sloane, Nov 22 2015
Convolution of A109699 and A109698. - Vaclav Kotesovec, Jan 21 2017

Examples

			G.f. = 1 + x^2 + x^3 + x^4 + x^5 + 2*x^6 + 2*x^7 + 3*x^8 + 3*x^9 + 4*x^10 + 4*x^11 + ...
G.f. = q^11 + q^131 + q^191 + q^251 + q^311 + 2*q^371 + 2*q^431 + 3*q^491 + 3*q^551 + ...
From _Joerg Arndt_, Dec 27 2012: (Start)
The a(18)=15: the partitions of 18 where all parts are 2 or 3 (mod 5) are
[ 1]  [ 2 2 2 2 2 2 2 2 2 ]
[ 2]  [ 3 3 2 2 2 2 2 2 ]
[ 3]  [ 3 3 3 3 2 2 2 ]
[ 4]  [ 3 3 3 3 3 3 ]
[ 5]  [ 7 3 2 2 2 2 ]
[ 6]  [ 7 3 3 3 2 ]
[ 7]  [ 7 7 2 2 ]
[ 8]  [ 8 2 2 2 2 2 ]
[ 9]  [ 8 3 3 2 2 ]
[10]  [ 8 7 3 ]
[11]  [ 8 8 2 ]
[12]  [ 12 2 2 2 ]
[13]  [ 12 3 3 ]
[14]  [ 13 3 2 ]
[15]  [ 18 ]
(End)
From _Wolfdieter Lang_, Oct 29 2016: (Start)
The a(18)=15 partitions of 18 without part 1 and parts differing by at least 2 are:
  [18]; [16,2], [15,3], [14,4], [13,5], [12,6], [11,7], [10,8]; [12,4,2], [11,5,2], [10,6,2], [9,7,2],[10,5,3], [9,6,3], [8,6,4]. The semicolon separates different number of parts. The maximal number of parts is A259361(18) = 3. (End)
		

References

  • G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 238.
  • G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge University Press, 1999; Exercise 6(f), p. 591.
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 669.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 108.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 5th ed., Clarendon Press, Oxford, 2003, pp. 290-291.
  • H. P. Robinson, Letter to N. J. A. Sloane, Jan 04 1974.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A003114.
For the generalized Rogers-Ramanujan series G[1], G[2], G[3], G[4], G[5], G[6], G[7], G[8] see A003114, A003106, A006141, A264591, A264592, A264593, A264594, A264595. G[0] = G[1]+G[2] is given by A003113.

Programs

  • Haskell
    a003106 = p a047221_list where
       p _          0 = 1
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Nov 30 2012
  • Maple
    g:=1/product((1-x^(5*j-2))*(1-x^(5*j-3)),j=1..15): gser:=series(g,x=0,66): seq(coeff(gser,x,n),n=0..63); # Emeric Deutsch, Apr 09 2006
  • Mathematica
    max = 63; g[x_] := 1/Product[(1-x^(5j-2))*(1-x^(5j-3)), {j, 1, Floor[max/4]}]; CoefficientList[ Series[g[x], {x, 0, max}], x] (* Jean-François Alcover, Nov 17 2011, after Emeric Deutsch *)
    Table[Count[IntegerPartitions[n], p_ /; Min[p] > Length[p]], {n, 40}] (* Clark Kimberling, Feb 13 2014 *)
    a[ n_] := SeriesCoefficient[ 1 / (QPochhammer[ x^2, x^5] QPochhammer[ x^3, x^5]), {x, 0, n}]; (* Michael Somos, May 06 2015 *)
    a[ n_] := SeriesCoefficient[ Product[ (1 - x^k)^{0, -1, -1, 0, 0}[[Mod[k, 5, 1]]], {k, n}], {x, 0, n}]; (* Michael Somos, May 17 2015 *)
    nmax = 63; kmax = nmax/5;
    s = Flatten[{Range[0, kmax]*5 + 2}~Join~{Range[0, kmax]*5 + 3}];
    Table[Count[IntegerPartitions@n, x_ /; SubsetQ[s, x]], {n, 0, nmax}] (* Robert Price, Jul 31 2020 *)
  • PARI
    {a(n) = my(t); if( n<0, 0, t = 1 + x * O(x^n); polcoeff( sum(k=1, (sqrtint(4*n + 1) - 1) \ 2, t *= x^(2*k) / (1 - x^k) * (1 + x * O(x^(n - k^2 - k))), 1), n))}; /* Michael Somos, Oct 15 2008 */
    

Formula

The Rogers-Ramanujan identity is 1 + Sum_{n >= 1} t^(n*(n+1))/((1-t)*(1-t^2)*...*(1-t^n)) = Product_{n >= 1} 1/((1-t^(5*n-2))*(1-t^(5*n-3))); this is the g.f. for the sequence.
G.f.: (Product_{k>0} 1 + x^(2*k)) * (Sum_{k>=0} x^(k^2 + 2*k) / (Product_{i=1..k} 1 - x^(4*i))). - Michael Somos, Oct 19 2006
Euler transform of period 5 sequence [ 0, 1, 1, 0, 0, ...]. - Michael Somos, Oct 15 2008
From Joerg Arndt, Oct 10 2012: (Start)
Bill Gosper gives (message to the math-fun mailing list, Oct 07 2012)
prod(k>=0, [0 , a; q^k, 1]) = [0, X(a,q); 0, Y(a,q)] where
X(a,q) = a * sum(n>=0, a^n*q^(n^2) / prod(k=1..n, 1-q^n) ) and
Y(a,q) = sum(n>=0, a^n*q^(n^2-n) / prod(k=1..n, 1-q^n) ).
Set a=q to obtain prod(k>=0, [0 , a; q^k, 1]) = [0, q*H(q); 0, G(q)] where
H(q) is the g.f. of A003106 and G(q) is the g.f. of A003114.
Bill Gosper and N. J. A. Sloane give (message to math-fun, Oct 10 2012)
prod(k>=0, [0 , a*q^k; 1, 1]) = [U(a,q), U(a,q); V(a,q), V(a,q)] where
U(a,q) = a * sum(n>=0, a^n*q^(n^2+n) / prod(k=1..n, 1-q^k) ) and
V(a,q) = sum(n>=0, a^n*q^(n^2) / prod(k=1..n, 1-q^k) ).
Set a=1 to obtain prod(k>=0, [0 , q^k; 1, 1]) = [H(q), H(q); G(q), G(q)].
(End)
Expansion of f(-x^5) / f(-x^2, -x^3) in powers of x where f(, ) is the Ramanujan general theta function. - Michael Somos, May 06 2015
Expansion of f(-x, -x^4) / f(-x) in powers of x where f(, ) is the Ramanujan general theta function. - Michael Somos, Jun 13 2015
a(n) ~ sqrt((sqrt(5)-1)/5) * exp(2*Pi*sqrt(n/15)) / (2^(3/2) * 3^(1/4) * n^(3/4)) * (1 + (11*Pi/(60*sqrt(15)) - 3*sqrt(15)/(16*Pi)) / sqrt(n)). - Vaclav Kotesovec, Aug 24 2015, extended Jan 24 2017
a(n) = (1/n)*Sum_{k=1..n} A284152(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 21 2017

A003631 Primes congruent to 2 or 3 modulo 5.

Original entry on oeis.org

2, 3, 7, 13, 17, 23, 37, 43, 47, 53, 67, 73, 83, 97, 103, 107, 113, 127, 137, 157, 163, 167, 173, 193, 197, 223, 227, 233, 257, 263, 277, 283, 293, 307, 313, 317, 337, 347, 353, 367, 373, 383, 397, 433, 443, 457, 463, 467, 487, 503, 523, 547, 557, 563, 577
Offset: 1

Views

Author

Keywords

Comments

For n>1, sequence gives primes ending in 3 or 7. - Lekraj Beedassy, Oct 27 2003
Inert rational primes in Q(sqrt 5), or, p is not a square mod 5. [See e.g., Hasse, Legendre symbol (5|p) = -1, Hardy and Wright, Theorem 257 (2), p. 222, and Dodd Appendix B, pp. 128 - 150, primes p < 32771 with (p,0). - Wolfdieter Lang, Jun 16 2021]
Primes for which the period of the Fibonacci sequence mod p divides 2p+2.
Let F(n) be the n-th Fibonacci number for n=1,2,3,... (A000045). F(n) mod p (a prime) generates a periodic sequence. This sequence may be generated as follows: F(p-1)* F(p) mod p = p-1. E.g., p=7: F(6) * F(7) mod 7 = 8 * 13 mod 7 = 6 = p-1. - Louis Mello (Mellols(AT)aol.com), Feb 09 2001
These are also the primes p that divide Fibonacci(p+1). - Jud McCranie
Also primes p such that p divides F(2p+1)-1; such that p divides F(2p+3)-1; such that p divides F(3p+1)-1. - Benoit Cloitre, Sep 05 2003
Primes p such that the polynomial x^2-x-1 mod p has no zeros; i.e., x^2-x-1 is irreducible over the integers mod p. - T. D. Noe, May 02 2005
Primes p such that (1-x^5)/(1-x) is irreducible over GF(p). - Joerg Arndt, Aug 10 2011
Primes p such that p does not divide Sum_{i=1..p-1} Fibonacci(i)^2 = A001654(p-1). - Arkadiusz Wesolowski, Jul 23 2012
The prime 2 and primes p such that p^2 mod 10 = 9. - Richard R. Forberg, Aug 28 2013
Primes p such that 5 divides sigma(p^3), cf. A274397. - M. F. Hasler, Jul 10 2016

References

  • F. W. Dodd, Number Theory in the Quadratic Field with Golden Section Unit, Polygon Publishing House, Passaic, NJ 07055, 1983, Appendix B, pp. 128 - 150.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Chap. X, p. 150, Chap. XV, Theorem 257 (2), p. 222, Oxford University Press, Fifth edition.
  • H. Hasse, Number Theory, Springer-Verlag, NY, 1980, p. 498.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • N. N. Vorob'ev, Fibonacci Numbers, Pergamon Press, 1961.

Crossrefs

Primes in A047221.
Cf. A000040.
Cf. A274397.

Programs

  • Haskell
    a003631 n = a003631_list !! (n-1)
    a003631_list = filter ((== 1) . a010051') a047221_list
    -- Reinhard Zumkeller, Nov 27 2012, Jul 19 2011
    
  • Magma
    [ p: p in PrimesUpTo(1000) | p mod 5 in {2, 3} ]; // Vincenzo Librandi, Aug 07 2012
  • Mathematica
    Select[ Prime[Range[106]], MemberQ[{2, 3}, Mod[#, 5]] &] (* Robert G. Wilson v, Sep 12 2011 *)
    a[ n_] := If[ n < 1, 0, Module[{c = 0, m = 0}, While[ c < n, If[ PrimeQ[++m] && KroneckerSymbol[5, m] == -1, c++]]; m]]; (* Michael Somos, Nov 24 2018 *)
  • PARI
    list(lim)=select(n->n%5==2||n%5==3,primes(primepi(lim))) \\ Charles R Greathouse IV, Jul 25 2011
    
  • PARI
    {a(n) = if( n < 1, 0, my(c ,m); while( c < n, if( isprime(m++) && kronecker(5, m) == -1, c++)); m)}; /* Michael Somos, Aug 14 2012 */
    

Formula

a(n) ~ 2n log n. - Charles R Greathouse IV, Jun 19 2017

A191722 Dispersion of A008851, (numbers >1 and congruent to 0 or 1 mod 5), by antidiagonals.

Original entry on oeis.org

1, 5, 2, 15, 6, 3, 40, 16, 10, 4, 101, 41, 26, 11, 7, 255, 105, 66, 30, 20, 8, 640, 265, 166, 76, 51, 21, 9, 1601, 665, 416, 191, 130, 55, 25, 12, 4005, 1665, 1041, 480, 326, 140, 65, 31, 13, 10015, 4165, 2605, 1201, 816, 351, 165, 80, 35, 14, 25040, 10415
Offset: 1

Views

Author

Clark Kimberling, Jun 13 2011

Keywords

Comments

For a background discussion of dispersions and their fractal sequences, see A191426. For dispersions of congruence sequences mod 3, mod 4, or mod 5, see A191655, A191663, A191667, A191702.
...
Suppose that {2,3,4,5,6} is partitioned as {x1, x2} and {x3,x4,x5}. Let S be the increasing sequence of numbers >1 and congruent to x1 or x2 mod 5, and let T be the increasing sequence of numbers >1 and congruent to x3 or x4 or x5 mod 5. There are 10 sequences in S, each matched by a (nearly) complementary sequence in T. Each of the 20 sequences generates a dispersion, as listed here:
...
A191722=dispersion of A008851 (0, 1 mod 5 and >1)
A191723=dispersion of A047215 (0, 2 mod 5 and >1)
A191724=dispersion of A047218 (0, 3 mod 5 and >1)
A191725=dispersion of A047208 (0, 4 mod 5 and >1)
A191726=dispersion of A047216 (1, 2 mod 5 and >1)
A191727=dispersion of A047219 (1, 3 mod 5 and >1)
A191728=dispersion of A047209 (1, 4 mod 5 and >1)
A191729=dispersion of A047221 (2, 3 mod 5 and >1)
A191730=dispersion of A047211 (2, 4 mod 5 and >1)
A191731=dispersion of A047204 (3, 4 mod 5 and >1)
...
A191732=dispersion of A047202 (2,3,4 mod 5 and >1)
A191733=dispersion of A047206 (1,3,4 mod 5 and >1)
A191734=dispersion of A032793 (1,2,4 mod 5 and >1)
A191735=dispersion of A047223 (1,2,3 mod 5 and >1)
A191736=dispersion of A047205 (0,3,4 mod 5 and >1)
A191737=dispersion of A047212 (0,2,4 mod 5 and >1)
A191738=dispersion of A047222 (0,2,3 mod 5 and >1)
A191739=dispersion of A008854 (0,1,4 mod 5 and >1)
A191740=dispersion of A047220 (0,1,3 mod 5 and >1)
A191741=dispersion of A047217 (0,1,2 mod 5 and >1)
...
EXCEPT for at most 2 initial terms (so that column 1 always starts with 1):
A191722 has 1st col A047202, all else A008851
A191723 has 1st col A047206, all else A047215
A191724 has 1st col A032793, all else A047218
A191725 has 1st col A047223, all else A047208
A191726 has 1st col A047205, all else A047216
A191727 has 1st col A047212, all else A047219
A191728 has 1st col A047222, all else A047209
A191729 has 1st col A008854, all else A047221
A191730 has 1st col A047220, all else A047211
A191731 has 1st col A047217, all else A047204
...
A191732 has 1st col A000851, all else A047202
A191733 has 1st col A047215, all else A047206
A191734 has 1st col A047218, all else A032793
A191735 has 1st col A047208, all else A047223
A191736 has 1st col A047216, all else A047205
A191737 has 1st col A047219, all else A047212
A191738 has 1st col A047209, all else A047222
A191739 has 1st col A047221, all else A008854
A191740 has 1st col A047211, all else A047220
A191741 has 1st col A047204, all else A047217
...
Regarding the dispersions A191722-A191741, there are general formulas for sequences of the type "(a or b mod m)" and "(a or b or c mod m)" used in the relevant Mathematica programs.

Examples

			Northwest corner:
1....5....15...40...101
2....6....16...41...105
3....10...26...66...166
4....11...30...76...191
7....20...51...130..326
8....21...55...140..351
		

Crossrefs

Programs

  • Mathematica
    (* Program generates the dispersion array t of the increasing sequence f[n] *)
    r = 40; r1 = 12;  c = 40; c1 = 12;
    a=5; b=6; m[n_]:=If[Mod[n,2]==0,1,0];
    f[n_]:=a*m[n+1]+b*m[n]+5*Floor[(n-1)/2]
    Table[f[n], {n, 1, 30}]  (* A008851 *)
    mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]]
    (* A191722 *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191722  *)

A191723 Dispersion of A047215, (numbers >1 and congruent to 0 or 2 mod 5), by antidiagonals.

Original entry on oeis.org

1, 2, 3, 5, 7, 4, 12, 17, 10, 6, 30, 42, 25, 15, 8, 75, 105, 62, 37, 20, 9, 187, 262, 155, 92, 50, 22, 11, 467, 655, 387, 230, 125, 55, 27, 13, 1167, 1637, 967, 575, 312, 137, 67, 32, 14, 2917, 4092, 2417, 1437, 780, 342, 167, 80, 35, 16, 7292, 10230, 6042
Offset: 1

Views

Author

Clark Kimberling, Jun 13 2011

Keywords

Comments

For a background discussion of dispersions and their fractal sequences, see A191426. For dispersions of congruence sequences mod 3, mod 4, or mod 5, see A191655, A191663, A191667, A191702.
...
Suppose that {2,3,4,5,6} is partitioned as {x1, x2} and {x3,x4,x5}. Let S be the increasing sequence of numbers >1 and congruent to x1 or x2 mod 5, and let T be the increasing sequence of numbers >1 and congruent to x3 or x4 or x5 mod 5. There are 10 sequences in S, each matched by a (nearly) complementary sequence in T. Each of the 20 sequences generates a dispersion, as listed here:
...
A191722=dispersion of A008851 (0, 1 mod 5 and >1)
A191723=dispersion of A047215 (0, 2 mod 5 and >1)
A191724=dispersion of A047218 (0, 3 mod 5 and >1)
A191725=dispersion of A047208 (0, 4 mod 5 and >1)
A191726=dispersion of A047216 (1, 2 mod 5 and >1)
A191727=dispersion of A047219 (1, 3 mod 5 and >1)
A191728=dispersion of A047209 (1, 4 mod 5 and >1)
A191729=dispersion of A047221 (2, 3 mod 5 and >1)
A191730=dispersion of A047211 (2, 4 mod 5 and >1)
A191731=dispersion of A047204 (3, 4 mod 5 and >1)
...
A191732=dispersion of A047202 (2,3,4 mod 5 and >1)
A191733=dispersion of A047206 (1,3,4 mod 5 and >1)
A191734=dispersion of A032793 (1,2,4 mod 5 and >1)
A191735=dispersion of A047223 (1,2,3 mod 5 and >1)
A191736=dispersion of A047205 (0,3,4 mod 5 and >1)
A191737=dispersion of A047212 (0,2,4 mod 5 and >1)
A191738=dispersion of A047222 (0,2,3 mod 5 and >1)
A191739=dispersion of A008854 (0,1,4 mod 5 and >1)
A191740=dispersion of A047220 (0,1,3 mod 5 and >1)
A191741=dispersion of A047217 (0,1,2 mod 5 and >1)
...
For further information about these 20 dispersions, see A191722.
...
Regarding the dispersions A191722-A191741, there are general formulas for sequences of the type "(a or b mod m)" and "(a or b or c mod m)" used in the relevant Mathematica programs.

Examples

			Northwest corner:
1....2....5....12....30
3....7....17...42....105
4....10...25...62....155
6....15...37...92....230
8....20...50...125...312
9....22...55...137...342
		

Crossrefs

Programs

  • Mathematica
    (* Program generates the dispersion array t of the increasing sequence f[n] *)
    r = 40; r1 = 12;  c = 40; c1 = 12;
    a=2; b=5; m[n_]:=If[Mod[n,2]==0,1,0];
    f[n_]:=a*m[n+1]+b*m[n]+5*Floor[(n-1)/2]
    Table[f[n], {n, 1, 30}]  (* A047215 *)
    mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191722 *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191722  *)

A191724 Dispersion of A047218, (numbers >1 and congruent to 0 or 3 mod 5), by antidiagonals.

Original entry on oeis.org

1, 3, 2, 8, 5, 4, 20, 13, 10, 6, 50, 33, 25, 15, 7, 125, 83, 63, 38, 18, 9, 313, 208, 158, 95, 45, 23, 11, 783, 520, 395, 238, 113, 58, 28, 12, 1958, 1300, 988, 595, 283, 145, 70, 30, 14, 4895, 3250, 2470, 1488, 708, 363, 175, 75, 35, 16, 12238, 8125, 6175
Offset: 1

Views

Author

Clark Kimberling, Jun 13 2011

Keywords

Comments

For a background discussion of dispersions and their fractal sequences, see A191426. For dispersions of congruence sequences mod 3, mod 4, or mod 5, see A191655, A191663, A191667, A191702.
...
Suppose that {2,3,4,5,6} is partitioned as {x1, x2} and {x3,x4,x5}. Let S be the increasing sequence of numbers >1 and congruent to x1 or x2 mod 5, and let T be the increasing sequence of numbers >1 and congruent to x3 or x4 or x5 mod 5. There are 10 sequences in S, each matched by a (nearly) complementary sequence in T. Each of the 20 sequences generates a dispersion, as listed here:
...
A191722=dispersion of A008851 (0, 1 mod 5 and >1)
A191723=dispersion of A047215 (0, 2 mod 5 and >1)
A191724=dispersion of A047218 (0, 3 mod 5 and >1)
A191725=dispersion of A047208 (0, 4 mod 5 and >1)
A191726=dispersion of A047216 (1, 2 mod 5 and >1)
A191727=dispersion of A047219 (1, 3 mod 5 and >1)
A191728=dispersion of A047209 (1, 4 mod 5 and >1)
A191729=dispersion of A047221 (2, 3 mod 5 and >1)
A191730=dispersion of A047211 (2, 4 mod 5 and >1)
A191731=dispersion of A047204 (3, 4 mod 5 and >1)
...
A191732=dispersion of A047202 (2,3,4 mod 5 and >1)
A191733=dispersion of A047206 (1,3,4 mod 5 and >1)
A191734=dispersion of A032793 (1,2,4 mod 5 and >1)
A191735=dispersion of A047223 (1,2,3 mod 5 and >1)
A191736=dispersion of A047205 (0,3,4 mod 5 and >1)
A191737=dispersion of A047212 (0,2,4 mod 5 and >1)
A191738=dispersion of A047222 (0,2,3 mod 5 and >1)
A191739=dispersion of A008854 (0,1,4 mod 5 and >1)
A191740=dispersion of A047220 (0,1,3 mod 5 and >1)
A191741=dispersion of A047217 (0,1,2 mod 5 and >1)
...
For further information about these 20 dispersions, see A191722.
...
Regarding the dispersions A191722-A191741, there are general formulas for sequences of the type "(a or b mod m)" and "(a or b or c mod m)" used in the relevant Mathematica programs.

Examples

			Northwest corner:
1....3....8....20....50
2....5....13...33....83
4....10...25...63....158
6....15...38...95....238
7....18...45...113...283
9....23...58...145...363
		

Crossrefs

Programs

  • Mathematica
    (* Program generates the dispersion array t of the increasing sequence f[n] *)
    r = 40; r1 = 12;  c = 40; c1 = 12;
    a=3; b=5; m[n_]:=If[Mod[n,2]==0,1,0];
    f[n_]:=a*m[n+1]+b*m[n]+5*Floor[(n-1)/2]
    Table[f[n], {n, 1, 30}]  (* A047218 *)
    mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191724 *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191724  *)

A191725 Dispersion of A047208, (numbers >1 and congruent to 0 or 4 mod 5), by antidiagonals.

Original entry on oeis.org

1, 4, 2, 10, 5, 3, 25, 14, 9, 6, 64, 35, 24, 15, 7, 160, 89, 60, 39, 19, 8, 400, 224, 150, 99, 49, 20, 11, 1000, 560, 375, 249, 124, 50, 29, 12, 2500, 1400, 939, 624, 310, 125, 74, 30, 13, 6250, 3500, 2349, 1560, 775, 314, 185, 75, 34, 16, 15625, 8750, 5874
Offset: 1

Views

Author

Clark Kimberling, Jun 13 2011

Keywords

Comments

For a background discussion of dispersions and their fractal sequences, see A191426. For dispersions of congruence sequences mod 3, mod 4, or mod 5, see A191655, A191663, A191667, A191702.
...
Suppose that {2,3,4,5,6} is partitioned as {x1, x2} and {x3,x4,x5}. Let S be the increasing sequence of numbers >1 and congruent to x1 or x2 mod 5, and let T be the increasing sequence of numbers >1 and congruent to x3 or x4 or x5 mod 5. There are 10 sequences in S, each matched by a (nearly) complementary sequence in T. Each of the 20 sequences generates a dispersion, as listed here:
...
A191722=dispersion of A008851 (0, 1 mod 5 and >1)
A191723=dispersion of A047215 (0, 2 mod 5 and >1)
A191724=dispersion of A047218 (0, 3 mod 5 and >1)
A191725=dispersion of A047208 (0, 4 mod 5 and >1)
A191726=dispersion of A047216 (1, 2 mod 5 and >1)
A191727=dispersion of A047219 (1, 3 mod 5 and >1)
A191728=dispersion of A047209 (1, 4 mod 5 and >1)
A191729=dispersion of A047221 (2, 3 mod 5 and >1)
A191730=dispersion of A047211 (2, 4 mod 5 and >1)
A191731=dispersion of A047204 (3, 4 mod 5 and >1)
...
A191732=dispersion of A047202 (2,3,4 mod 5 and >1)
A191733=dispersion of A047206 (1,3,4 mod 5 and >1)
A191734=dispersion of A032793 (1,2,4 mod 5 and >1)
A191735=dispersion of A047223 (1,2,3 mod 5 and >1)
A191736=dispersion of A047205 (0,3,4 mod 5 and >1)
A191737=dispersion of A047212 (0,2,4 mod 5 and >1)
A191738=dispersion of A047222 (0,2,3 mod 5 and >1)
A191739=dispersion of A008854 (0,1,4 mod 5 and >1)
A191740=dispersion of A047220 (0,1,3 mod 5 and >1)
A191741=dispersion of A047217 (0,1,2 mod 5 and >1)
...
For further information about these 20 dispersions, see A191722.
...
Regarding the dispersions A191722-A191741, there are general formulas for sequences of the type "(a or b mod m)" and "(a or b or c mod m)" used in the relevant Mathematica programs.

Examples

			Northwest corner:
1....4....10....25....64
2....5....14....35...89
3....9....24...60...150
6....15...39...99...249
7....19...49...124..310
8....20...50...125...314
		

Crossrefs

Programs

  • Mathematica
    (* Program generates the dispersion array t of the increasing sequence f[n] *)
    r = 40; r1 = 12;  c = 40; c1 = 12;
    a=4; b=5; m[n_]:=If[Mod[n,2]==0,1,0];
    f[n_]:=a*m[n+1]+b*m[n]+5*Floor[(n-1)/2]
    Table[f[n], {n, 1, 30}]  (* A047208 *)
    mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191725 *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191725  *)

A191726 Dispersion of A047216, (numbers >1 and congruent to 1 or 2 mod 5), by antidiagonals.

Original entry on oeis.org

1, 2, 3, 6, 7, 4, 16, 17, 11, 5, 41, 42, 27, 12, 8, 102, 106, 67, 31, 21, 9, 256, 266, 167, 77, 52, 22, 10, 641, 666, 417, 192, 131, 56, 26, 13, 1602, 1666, 1042, 481, 327, 141, 66, 32, 14, 4006, 4166, 2606, 1202, 817, 352, 166, 81, 36, 15, 10016, 10416
Offset: 1

Views

Author

Clark Kimberling, Jun 13 2011

Keywords

Comments

For a background discussion of dispersions and their fractal sequences, see A191426. For dispersions of congruence sequences mod 3, mod 4, or mod 5, see A191655, A191663, A191667, A191702.
...
Suppose that {2,3,4,5,6} is partitioned as {x1, x2} and {x3,x4,x5}. Let S be the increasing sequence of numbers >1 and congruent to x1 or x2 mod 5, and let T be the increasing sequence of numbers >1 and congruent to x3 or x4 or x5 mod 5. There are 10 sequences in S, each matched by a (nearly) complementary sequence in T. Each of the 20 sequences generates a dispersion, as listed here:
...
A191722=dispersion of A008851 (0, 1 mod 5 and >1)
A191723=dispersion of A047215 (0, 2 mod 5 and >1)
A191724=dispersion of A047218 (0, 3 mod 5 and >1)
A191725=dispersion of A047208 (0, 4 mod 5 and >1)
A191726=dispersion of A047216 (1, 2 mod 5 and >1)
A191727=dispersion of A047219 (1, 3 mod 5 and >1)
A191728=dispersion of A047209 (1, 4 mod 5 and >1)
A191729=dispersion of A047221 (2, 3 mod 5 and >1)
A191730=dispersion of A047211 (2, 4 mod 5 and >1)
A191731=dispersion of A047204 (3, 4 mod 5 and >1)
...
A191732=dispersion of A047202 (2,3,4 mod 5 and >1)
A191733=dispersion of A047206 (1,3,4 mod 5 and >1)
A191734=dispersion of A032793 (1,2,4 mod 5 and >1)
A191735=dispersion of A047223 (1,2,3 mod 5 and >1)
A191736=dispersion of A047205 (0,3,4 mod 5 and >1)
A191737=dispersion of A047212 (0,2,4 mod 5 and >1)
A191738=dispersion of A047222 (0,2,3 mod 5 and >1)
A191739=dispersion of A008854 (0,1,4 mod 5 and >1)
A191740=dispersion of A047220 (0,1,3 mod 5 and >1)
A191741=dispersion of A047217 (0,1,2 mod 5 and >1)
...
For further information about these 20 dispersions, see A191722.
...
Regarding the dispersions A191722-A191741, there are general formulas for sequences of the type "(a or b mod m)" and "(a or b or c mod m)" used in the relevant Mathematica programs.

Examples

			Northwest corner:
1....2....6....16....41
3....7....17...42....106
4....11...27...67....167
5....12...31...77....192
8....21...52...131...327
9....22...56...141...352
		

Crossrefs

Programs

  • Mathematica
    (* Program generates the dispersion array t of the increasing sequence f[n] *)
    r = 40; r1 = 12;  c = 40; c1 = 12;
    a=2; b=6; m[n_]:=If[Mod[n,2]==0,1,0];
    f[n_]:=a*m[n+1]+b*m[n]+5*Floor[(n-1)/2]
    Table[f[n], {n, 1, 30}]  (* A047216 *)
    mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191726 *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191726  *)
Showing 1-10 of 36 results. Next