cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094440 Triangular array read by rows: T(n,k) = Fibonacci(n+1-k)*C(n,k-1), k = 1..n; n >= 1.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 3, 8, 6, 4, 5, 15, 20, 10, 5, 8, 30, 45, 40, 15, 6, 13, 56, 105, 105, 70, 21, 7, 21, 104, 224, 280, 210, 112, 28, 8, 34, 189, 468, 672, 630, 378, 168, 36, 9, 55, 340, 945, 1560, 1680, 1260, 630, 240, 45, 10, 89, 605, 1870, 3465, 4290, 3696, 2310, 990, 330, 55, 11
Offset: 1

Views

Author

Clark Kimberling, May 03 2004

Keywords

Comments

Row sums yield the even-subscripted Fibonacci numbers (A001906).
Row n shows the coefficients of the numerator of the n-th derivative of c(n)/(x^2+x-1), where c(n) = ((-1)^(n + 1))/n!; see the Mathematica program. - Clark Kimberling, Oct 22 2019

Examples

			Triangle starts:
   1;
   1,  2;
   2,  3,   3;
   3,  8,   6,   4;
   5, 15,  20,  10,  5;
   8, 30,  45,  40, 15,  6;
  13, 56, 105, 105, 70, 21, 7;
  ...
T(4,3) = F(2)*C(4,2) = 1*6 = 6.
		

Crossrefs

Programs

  • GAP
    Flat(List([1..12], n-> List([1..n], k-> Binomial(n,k-1)* Fibonacci(n-k+1) ))); # G. C. Greubel, Oct 30 2019
  • Magma
    /* As triangle */ [[Fibonacci(n+1-k)*Binomial(n,k-1): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Aug 15 2017
    
  • Maple
    with(combinat): T:=(n,k)->binomial(n,k-1)*fibonacci(n+1-k): for n from 1 to 11 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form # Emeric Deutsch
  • Mathematica
    Table[Fibonacci[n+1-k]Binomial[n,k-1],{n,20},{k,n}]//Flatten (* Harvey P. Dale, Sep 14 2016 *)
    (* Next program outputs polynomials having coefficients T(n,k) *)
    g[x_, n_] := Numerator[(-1)^(n + 1) Factor[D[1/(1 - x - x^2), {x, n}]]]
    Column[Expand[Table[g[x, n]/n!, {n, 0, 12}]]] (* Clark Kimberling, Oct 22 2019 *)
  • PARI
    T(n,k) = binomial(n,k-1)*fibonacci(n-k+1);
    for(n=1,12, for(k=1,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Oct 30 2019
    
  • Sage
    [[binomial(n,k-1)*fibonacci(n-k+1) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Oct 30 2019
    

Formula

From Peter Bala, Aug 17 2007: (Start)
With an offset of 0, the row polynomials F(n,x) = Sum_{k = 0..n} C(n,k)* Fibonacci(n-k)*x^k satisfy F(n,x)*L(n,x) = F(2*n,x), where L(n,x) = Sum_{k = 0..n} C(n,k)*Lucas(n-k)*x^k.
Other identities and formulas include:
F(n+1,x)^2 - F(n,x)*F(n+2,x) = (x^2 + x - 1)^n;
Sum_{k = 0..n} C(n,k)*F(n-k,x)*L(k,x) = (2^n)*F(n,x);
F(n,2*x) = Sum_{k = 0..n} C(n,k)*F(n-k,x)*x^k;
F(n,3*x) = Sum_{k = 0..n} C(n,k)*F(n-k,2*x)*x^k, etc.
The sequence {F(n,r)}n>=1 gives the r-th binomial transform of the Fibonacci numbers: r = 1 gives A001906, r = 2 gives A030191, r = 3 gives A099453, r = 4 gives A081574, r = 5 gives A081575.
F(n,1/phi) = (-1)^(n-1)*F(n,-phi) = sqrt(5)^(n-1) for n >= 1, where phi = (1 + sqrt(5))/2.
The polynomials F(n,-x) satisfy a Riemann hypothesis: the zeros of F(n,-x) lie on the vertical line Re x = 1/2 in the complex plane.
G.f.: t/(1 - (2*x + 1)*t + (x^2 + x - 1)*t^2) = t + (1 + 2*x)*t^2 + (2 + 3*x + 3*x^2)*t^3 + (3 + 8*x + 6*x^2 + 4*x^3)*t^4 + ... . (End)
From Peter Bala, Jun 29 2016: (Start)
Working with an offset of 0, the n-th row polynomial F(n,x) = 1/sqrt(5)*( (x + phi)^n - (x - 1/phi)^n ), where phi = (1 + sqrt(5))/2.
d/dx(F(n,x)) = n*F(n-1,x).
F(-n,x) = -F(n,x)/(x^2 + x - 1)^n.
F(n,x - 1) = (-1)^(n-1)*F(n,-x).
F(n,x) is a divisibility sequence of polynomials, that is, if n divides m then F(n,x) divides F(m,x) in the polynomial ring Z[x]. (End)
From G. C. Greubel, Oct 30 2019: (Start)
Sum_{k = 1..n} T(n,k) = Fibonacci(2*n).
Sum_{k = 1..n} (-1)^k * T(n,k) = (-1)^n * Fibonacci(n). (End)
From Clark Kimberling, Oct 30 2019: (Start)
F(n,x) is a strong divisibility sequence of polynomials in Z[x]; that is,
gcd(F(x,h),F(x,k)) = F(x,gcd(h,k)) for h,k >= 1. Thus, if x is an integer, then F(n,x) is a strong divisibility sequence of integers; e.g., for x=3, we have A099453. (End)
Let p(n) denote the polynomial F(x,n). Then p(n) = k(b^n - c^n), where k = -1/sqrt(5), b = (1/2)(2x + 1 - sqrt(5)), c = (1/2)(2x + 1 + sqrt(5)), and for n >=3, p(n) = u*p(n - 1) + v*p(n - 2), where u = 1 + 2 x, v = 1 - x - x^2. - Clark Kimberling, Nov 11 2023

Extensions

Error in expansion of generating function corrected by Peter Bala, Sep 24 2008