cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094584 Dot product of (1,2,...,n) and first n distinct Fibonacci numbers.

Original entry on oeis.org

1, 5, 14, 34, 74, 152, 299, 571, 1066, 1956, 3540, 6336, 11237, 19777, 34582, 60134, 104062, 179320, 307855, 526775, 898706, 1529160, 2595624, 4396224, 7431049, 12537917, 21118814, 35517226, 59646386, 100034456, 167562035, 280348531, 468543802, 782277612
Offset: 1

Views

Author

Clark Kimberling, May 13 2004

Keywords

Comments

a(n) is the cost of all non-leaf nodes in the Fibonacci tree of order n+2. A Fibonacci tree of order n (n>=2) is a complete binary tree whose left subtree is the Fibonacci tree of order n-1 and whose right subtree is the Fibonacci tree of order n-2; each of the Fibonacci trees of order 0 and 1 is defined as a single node. In a Fibonacci tree the cost of a left (right) edge is defined to be 1 (2). The cost of a node of a Fibonacci tree is defined to be the sum of the costs of the edges that form the path from the root to this node. - Emeric Deutsch, Jun 14 2010

Examples

			a(4) = (1,2,3,4)*(1,2,3,5) = 1+4+9+20 = 34.
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 14.
  • D. E. Knuth, The Art of Computer Programming, Vol. 3, 2nd edition, Addison-Wesley, Reading, MA, 1998, p. 417. [From Emeric Deutsch, Jun 14 2010]

Crossrefs

Partial sums of A023607.

Programs

  • GAP
    List([1..40],n->(n+1)*Fibonacci(n+3)-Fibonacci(n+5)+3); # Muniru A Asiru, Apr 27 2019
    
  • Magma
    I:=[1,5,14,34,74]; [n le 5 select I[n] else 3*Self(n-1)-Self(n-2)-3*Self(n-3)+Self(n-4)+Self(n-5): n in [1..40]]; // Vincenzo Librandi, Mar 11 2015
    
  • Magma
    [n*Fibonacci(n+3)-Fibonacci(n+4)+3: n in [1..40]]; // G. C. Greubel, Apr 28 2019
    
  • Maple
    with(combinat): A094584:=n->(n+1)*fibonacci(n+3)-fibonacci(n+5)+3: seq(A094584(n), n=1..50); # Wesley Ivan Hurt, Mar 10 2015
  • Mathematica
    Table[Range[n].Fibonacci[Range[2,n+1]],{n,40}] (* Harvey P. Dale, Aug 21 2011 *)
  • PARI
    {a(n) = n*fibonacci(n+3) - fibonacci(n+4) +3}; \\ G. C. Greubel, Apr 28 2019
    
  • Sage
    [n*fibonacci(n+3) - fibonacci(n+4) +3 for n in (1..40)] # G. C. Greubel, Apr 28 2019

Formula

a(n) = F(2) + 2*F(3) + 3*F(4) + ... + n*F(n+1) = (n+1)*F(n+3) - F(n+5) + 3.
G.f.: x*(1+2*x)/((1-x)*(1-x-x^2)^2). - Colin Barker, Nov 11 2012
From Wesley Ivan Hurt, Mar 10 2015: (Start)
a(n) = 3*a(n-1) - a(n-2) - 3*a(n-3) + a(n-4) + a(n-5).
a(n) = Sum_{i=1..n+2} (n-i+1) * F(n-i+2).
a(n) = (30*(-1-sqrt(5))^n + (-15+7*sqrt(5))*2^n - (15+7*sqrt(5))*(-3-sqrt(5))^n + 2n*((5-2*sqrt(5))*2^n + (5+2*sqrt(5))*(-3-sqrt(5))^n)) / (10*(-1-sqrt(5))^n). (End)