A094584 Dot product of (1,2,...,n) and first n distinct Fibonacci numbers.
1, 5, 14, 34, 74, 152, 299, 571, 1066, 1956, 3540, 6336, 11237, 19777, 34582, 60134, 104062, 179320, 307855, 526775, 898706, 1529160, 2595624, 4396224, 7431049, 12537917, 21118814, 35517226, 59646386, 100034456, 167562035, 280348531, 468543802, 782277612
Offset: 1
Examples
a(4) = (1,2,3,4)*(1,2,3,5) = 1+4+9+20 = 34.
References
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 14.
- D. E. Knuth, The Art of Computer Programming, Vol. 3, 2nd edition, Addison-Wesley, Reading, MA, 1998, p. 417. [From Emeric Deutsch, Jun 14 2010]
Links
- Muniru A Asiru, Table of n, a(n) for n = 1..2000
- Y. Horibe, An entropy view of Fibonacci trees, Fibonacci Quarterly, 20, No. 2, 1982, 168-178. [From _Emeric Deutsch_, Jun 14 2010]
- Index entries for linear recurrences with constant coefficients, signature (3,-1,-3,1,1).
Programs
-
GAP
List([1..40],n->(n+1)*Fibonacci(n+3)-Fibonacci(n+5)+3); # Muniru A Asiru, Apr 27 2019
-
Magma
I:=[1,5,14,34,74]; [n le 5 select I[n] else 3*Self(n-1)-Self(n-2)-3*Self(n-3)+Self(n-4)+Self(n-5): n in [1..40]]; // Vincenzo Librandi, Mar 11 2015
-
Magma
[n*Fibonacci(n+3)-Fibonacci(n+4)+3: n in [1..40]]; // G. C. Greubel, Apr 28 2019
-
Maple
with(combinat): A094584:=n->(n+1)*fibonacci(n+3)-fibonacci(n+5)+3: seq(A094584(n), n=1..50); # Wesley Ivan Hurt, Mar 10 2015
-
Mathematica
Table[Range[n].Fibonacci[Range[2,n+1]],{n,40}] (* Harvey P. Dale, Aug 21 2011 *)
-
PARI
{a(n) = n*fibonacci(n+3) - fibonacci(n+4) +3}; \\ G. C. Greubel, Apr 28 2019
-
Sage
[n*fibonacci(n+3) - fibonacci(n+4) +3 for n in (1..40)] # G. C. Greubel, Apr 28 2019
Formula
a(n) = F(2) + 2*F(3) + 3*F(4) + ... + n*F(n+1) = (n+1)*F(n+3) - F(n+5) + 3.
G.f.: x*(1+2*x)/((1-x)*(1-x-x^2)^2). - Colin Barker, Nov 11 2012
From Wesley Ivan Hurt, Mar 10 2015: (Start)
a(n) = 3*a(n-1) - a(n-2) - 3*a(n-3) + a(n-4) + a(n-5).
a(n) = Sum_{i=1..n+2} (n-i+1) * F(n-i+2).
a(n) = (30*(-1-sqrt(5))^n + (-15+7*sqrt(5))*2^n - (15+7*sqrt(5))*(-3-sqrt(5))^n + 2n*((5-2*sqrt(5))*2^n + (5+2*sqrt(5))*(-3-sqrt(5))^n)) / (10*(-1-sqrt(5))^n). (End)
Comments