cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094588 a(n) = n*F(n-1) + F(n), where F = A000045.

Original entry on oeis.org

0, 1, 3, 5, 11, 20, 38, 69, 125, 223, 395, 694, 1212, 2105, 3639, 6265, 10747, 18376, 31330, 53277, 90385, 153011, 258523, 436010, 734136, 1234225, 2072043, 3474029, 5817515, 9730748, 16258910, 27139509, 45258917, 75408775, 125538539
Offset: 0

Views

Author

Paul Barry, May 13 2004

Keywords

Comments

This is the transform of the Fibonacci numbers under the inverse of the signed permutations matrix (see A094587).

Crossrefs

Programs

  • Haskell
    a094588 n = a094588_list !! n
    a094588_list = 0 : zipWith (+) (tail a000045_list)
                                   (zipWith (*) [1..] a000045_list)
    -- Reinhard Zumkeller, Mar 04 2012
    
  • Julia
    # The function 'fibrec' is defined in A354044.
    function A094588(n)
        n == 0 && return BigInt(0)
        a, b = fibrec(n - 1)
        a*n + b
    end
    println([A094588(n) for n in 0:34]) # Peter Luschny, May 16 2022
  • Magma
    [n*Fibonacci(n-1)+Fibonacci(n): n in [0..60]]; // Vincenzo Librandi, Apr 23 2011
    
  • Mathematica
    CoefficientList[Series[x (1+x-2x^2)/(1-x-x^2)^2,{x,0,40}],x]  (* Harvey P. Dale, Apr 16 2011 *)
  • PARI
    Vec((1+x-2*x^2)/(1-x-x^2)^2+O(x^99)) \\ Charles R Greathouse IV, Mar 04 2012
    

Formula

G.f. : x*(1 + x - 2*x^2)/(1 - x - x^2)^2.
a(n) = A101220(n, 0, n) - Ross La Haye, Jan 28 2005
a(n) = A109754(n, n). - Ross La Haye, Aug 20 2005
a(n) = (sin(c*n)*i - n*sin(c*(n - 1)))/(i^n*sqrt(5/4)) where c = arccos(i/2). - Peter Luschny, May 16 2022