A094588 a(n) = n*F(n-1) + F(n), where F = A000045.
0, 1, 3, 5, 11, 20, 38, 69, 125, 223, 395, 694, 1212, 2105, 3639, 6265, 10747, 18376, 31330, 53277, 90385, 153011, 258523, 436010, 734136, 1234225, 2072043, 3474029, 5817515, 9730748, 16258910, 27139509, 45258917, 75408775, 125538539
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..250
- Index entries for linear recurrences with constant coefficients, signature (2,1,-2,-1).
Programs
-
Haskell
a094588 n = a094588_list !! n a094588_list = 0 : zipWith (+) (tail a000045_list) (zipWith (*) [1..] a000045_list) -- Reinhard Zumkeller, Mar 04 2012
-
Julia
# The function 'fibrec' is defined in A354044. function A094588(n) n == 0 && return BigInt(0) a, b = fibrec(n - 1) a*n + b end println([A094588(n) for n in 0:34]) # Peter Luschny, May 16 2022
-
Magma
[n*Fibonacci(n-1)+Fibonacci(n): n in [0..60]]; // Vincenzo Librandi, Apr 23 2011
-
Mathematica
CoefficientList[Series[x (1+x-2x^2)/(1-x-x^2)^2,{x,0,40}],x] (* Harvey P. Dale, Apr 16 2011 *)
-
PARI
Vec((1+x-2*x^2)/(1-x-x^2)^2+O(x^99)) \\ Charles R Greathouse IV, Mar 04 2012
Formula
G.f. : x*(1 + x - 2*x^2)/(1 - x - x^2)^2.
a(n) = A101220(n, 0, n) - Ross La Haye, Jan 28 2005
a(n) = A109754(n, n). - Ross La Haye, Aug 20 2005
a(n) = (sin(c*n)*i - n*sin(c*(n - 1)))/(i^n*sqrt(5/4)) where c = arccos(i/2). - Peter Luschny, May 16 2022
Comments