cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A094612 Fundamental discriminants of real quadratic number fields with class number 3.

Original entry on oeis.org

229, 257, 316, 321, 469, 473, 568, 733, 761, 892, 993, 1016, 1101, 1229, 1257, 1304, 1373, 1436, 1489, 1509, 1772, 1901, 1929, 1957, 2021, 2089, 2101, 2177, 2213, 2429, 2557, 2589, 2636, 2677, 2713, 2777, 2857, 2917, 2981, 3173, 3221, 3229, 3261, 3356, 3569
Offset: 1

Views

Author

Eric W. Weisstein, May 14 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[3569], NumberFieldDiscriminant@Sqrt[#] == # && NumberFieldClassNumber@Sqrt[#] == 3 &] (* Arkadiusz Wesolowski, Oct 22 2012 *)
  • PARI
    {ok(n) = n>10 && isfundamental(n) && qfbclassno(n)==3};
    for(n=1, 3600, if(ok(n)==1, print1(n, ", "))) \\ G. C. Greubel, Mar 01 2019
    
  • Sage
    is_fund_and_qfbcn_1 = lambda n: is_fundamental_discriminant(n) and QuadraticField(n, 'a').class_number() == 3;
    A094612 = lambda n: filter(is_fund_and_qfbcn_1, (1, 2, .., n));
    A094612(3700) # G. C. Greubel, Mar 01 2019

Extensions

Edited by N. J. A. Sloane, May 01 2010

A094614 Fundamental discriminants of real quadratic number fields with class number 5.

Original entry on oeis.org

401, 817, 1093, 1393, 1429, 1641, 1756, 1897, 1996, 2081, 2153, 2908, 3121, 3181, 3253, 3928, 3997, 4353, 4357, 4441, 4504, 4757, 4889, 5241, 5269, 5308, 5944, 6113, 6157, 6481, 6949, 7064, 7229, 7513, 7817, 7861, 8049, 8108, 8121, 8309, 8501, 8689, 9181, 9229
Offset: 1

Views

Author

Eric W. Weisstein, May 14 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[9229], NumberFieldDiscriminant@Sqrt[#] == # && NumberFieldClassNumber@Sqrt[#] == 5 &] (* Arkadiusz Wesolowski, Oct 22 2012 *)
  • PARI
    {ok(n) = n>10 && isfundamental(n) && qfbclassno(n)==5};
    for(n=1, 10000, if(ok(n)==1, print1(n, ", "))) \\ G. C. Greubel, Mar 01 2019
    
  • Sage
    is_fund_and_qfbcn_1 = lambda n: is_fundamental_discriminant(n) and QuadraticField(n, 'a').class_number() == 5;
    A094614 = lambda n: filter(is_fund_and_qfbcn_1, (1, 2, .., n));
    A094614(10000) # G. C. Greubel, Mar 01 2019

A081363 Smallest squarefree integer k such that Q(sqrt(k)) has class number n.

Original entry on oeis.org

2, 10, 79, 82, 401, 235, 577, 226, 1129, 1111, 1297, 730, 4759, 1534, 9871, 2305, 7054, 4954, 15409, 3601, 7057, 4762, 23593, 9634, 24859, 13321, 8761, 5626, 49281, 11665, 97753, 15130, 55339, 19882, 25601, 18226, 24337, 19834, 41614, 16899, 55966, 47959
Offset: 1

Views

Author

Dean Hickerson, Mar 19 2003

Keywords

Comments

What is known about the asymptotics of this sequence? - Charles R Greathouse IV, Jan 26 2017
Records: 2, 10, 79, 82, 401, 577, 1129, 1297, 4759, 9871, 15409, 23593, 24859, 49281, 97753, 106537, 159199, 197137, 212137, 239119, 245023, 444089, 589822, 614849, 815413, 837929, 943951, 1025494, 1224121, 1240369, 1333255, 1334026, ..., . - Robert G. Wilson v, Apr 12 2017

Crossrefs

Programs

Extensions

More terms from Max Alekseyev, Apr 28 2010
Showing 1-3 of 3 results.