A003656 Discriminants of real quadratic fields with unique factorization.
5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 41, 44, 53, 56, 57, 61, 69, 73, 76, 77, 88, 89, 92, 93, 97, 101, 109, 113, 124, 129, 133, 137, 141, 149, 152, 157, 161, 172, 173, 177, 181, 184, 188, 193, 197, 201, 209, 213, 217, 233, 236, 237, 241, 248, 249, 253, 268, 269
Offset: 1
References
- D. A. Buell, Binary Quadratic Forms. Springer-Verlag, NY, 1989, pp. 224-241.
- H. Cohen, Advanced Topics in Computational Number Theory, Springer, 2000, p. 534.
- H. Hasse, Number Theory, Springer-Verlag, NY, 1980, p. 576.
- Pohst and Zassenhaus, Algorithmic Algebraic Number Theory, Cambridge Univ. Press, page 432.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Ezra Brown, Class numbers of real quadratic number fields, Trans. Amer. Math. Soc. 190 (1974), 99-107.
- Henri Cohen and X.-F. Roblot, Computing the Hilbert Class Field of Real Quadratic Fields, Math. Comp. 69 (2000), 1229-1244.
- Eric Weisstein's World of Mathematics, Class Number
- Index entries for sequences related to quadratic fields
Crossrefs
Programs
-
Mathematica
maxDisc = 269; t = Table[ {NumberFieldDiscriminant[ Sqrt[n] ], NumberFieldClassNumber[ Sqrt[n] ]}, {n, Select[ Range[2, maxDisc], SquareFreeQ] } ]; Union[ Select[ t, #[[2]] == 1 && #[[1]] <= maxDisc & ][[All, 1]]] (* Jean-François Alcover, Jan 24 2012 *)
-
Sage
is_fund_and_qfbcn_1 = lambda n: is_fundamental_discriminant(n) and QuadraticField(n, 'a').class_number() == 1 A003656 = lambda n: filter(is_fund_and_qfbcn_1, (1,2,..,n)) A003656(270) # Peter Luschny, Aug 10 2014
Extensions
More terms from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), May 15 2002
Comments