cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A003656 Discriminants of real quadratic fields with unique factorization.

Original entry on oeis.org

5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 41, 44, 53, 56, 57, 61, 69, 73, 76, 77, 88, 89, 92, 93, 97, 101, 109, 113, 124, 129, 133, 137, 141, 149, 152, 157, 161, 172, 173, 177, 181, 184, 188, 193, 197, 201, 209, 213, 217, 233, 236, 237, 241, 248, 249, 253, 268, 269
Offset: 1

Views

Author

Keywords

Comments

Discriminants of real quadratic fields with class number 1.
Other than the term 8, every term is of one of the three following forms: (i) p, where p is a prime congruent to 1 modulo 4; (ii) 4p or 8p, where p is a prime congruent to 3 modulo 4; (iii) pq, where p, q are distinct primes congruent to 3 modulo 4. In fact, for a positive fundamental discriminant d, the class number of the real quadratic field of discriminant d is odd if and only if d = 8 or is of the form (i), (ii) or (iii). See Theorem 1 and Theorem 2 of Ezra Brown's link. - Jianing Song, Feb 24 2021

References

  • D. A. Buell, Binary Quadratic Forms. Springer-Verlag, NY, 1989, pp. 224-241.
  • H. Cohen, Advanced Topics in Computational Number Theory, Springer, 2000, p. 534.
  • H. Hasse, Number Theory, Springer-Verlag, NY, 1980, p. 576.
  • Pohst and Zassenhaus, Algorithmic Algebraic Number Theory, Cambridge Univ. Press, page 432.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A003652, A003658, A014602 (imaginary case).
For discriminants of real quadratic number fields with class number 2, 3, ..., 10, see A094619, A094612-A094614, A218156-A218160; see also A035120.

Programs

  • Mathematica
    maxDisc = 269; t = Table[ {NumberFieldDiscriminant[ Sqrt[n] ], NumberFieldClassNumber[ Sqrt[n] ]}, {n, Select[ Range[2, maxDisc], SquareFreeQ] } ]; Union[ Select[ t, #[[2]] == 1 && #[[1]] <= maxDisc & ][[All, 1]]] (* Jean-François Alcover, Jan 24 2012 *)
  • Sage
    is_fund_and_qfbcn_1 = lambda n: is_fundamental_discriminant(n) and QuadraticField(n, 'a').class_number() == 1
    A003656 = lambda n: filter(is_fund_and_qfbcn_1, (1,2,..,n))
    A003656(270) # Peter Luschny, Aug 10 2014

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), May 15 2002

A094612 Fundamental discriminants of real quadratic number fields with class number 3.

Original entry on oeis.org

229, 257, 316, 321, 469, 473, 568, 733, 761, 892, 993, 1016, 1101, 1229, 1257, 1304, 1373, 1436, 1489, 1509, 1772, 1901, 1929, 1957, 2021, 2089, 2101, 2177, 2213, 2429, 2557, 2589, 2636, 2677, 2713, 2777, 2857, 2917, 2981, 3173, 3221, 3229, 3261, 3356, 3569
Offset: 1

Views

Author

Eric W. Weisstein, May 14 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[3569], NumberFieldDiscriminant@Sqrt[#] == # && NumberFieldClassNumber@Sqrt[#] == 3 &] (* Arkadiusz Wesolowski, Oct 22 2012 *)
  • PARI
    {ok(n) = n>10 && isfundamental(n) && qfbclassno(n)==3};
    for(n=1, 3600, if(ok(n)==1, print1(n, ", "))) \\ G. C. Greubel, Mar 01 2019
    
  • Sage
    is_fund_and_qfbcn_1 = lambda n: is_fundamental_discriminant(n) and QuadraticField(n, 'a').class_number() == 3;
    A094612 = lambda n: filter(is_fund_and_qfbcn_1, (1, 2, .., n));
    A094612(3700) # G. C. Greubel, Mar 01 2019

Extensions

Edited by N. J. A. Sloane, May 01 2010

A094619 Fundamental discriminants of real quadratic number fields with class number 2.

Original entry on oeis.org

40, 60, 65, 85, 104, 105, 120, 136, 140, 156, 165, 168, 185, 204, 205, 220, 221, 232, 264, 265, 273, 280, 285, 296, 305, 312, 345, 348, 357, 364, 365, 377, 380, 385, 408, 424, 429, 440, 444, 456, 460, 465, 476, 481, 485, 488, 492, 493, 533, 545, 552, 561, 565
Offset: 1

Views

Author

Eric W. Weisstein, May 14 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[565], NumberFieldDiscriminant@Sqrt[#] == # && NumberFieldClassNumber@Sqrt[#] == 2 &] (* Arkadiusz Wesolowski, Oct 22 2012 *)
  • PARI
    is(n)=n>9 && isfundamental(n) && qfbclassno(n)==2 \\ Charles R Greathouse IV, Nov 05 2014
    
  • Sage
    is_fund_and_qfbcn_1 = lambda n: is_fundamental_discriminant(n) and QuadraticField(n, 'a').class_number() == 2;
    A094619 = lambda n: filter(is_fund_and_qfbcn_1, (1, 2, .., n));
    A094619(600) # G. C. Greubel, Mar 01 2019

A218156 Fundamental discriminants of real quadratic number fields with class number 6.

Original entry on oeis.org

697, 785, 940, 985, 1345, 1384, 1708, 1765, 1937, 2024, 2233, 2296, 2505, 2941, 2993, 3021, 3144, 3281, 3305, 3368, 3496, 3576, 3580, 3592, 3596, 3624, 3973, 4065, 4344, 4764, 4765, 4844, 5073, 5353, 5356, 5368, 5369, 5529, 5621, 5624, 5685, 5901, 6108, 6153
Offset: 1

Views

Author

Arkadiusz Wesolowski, Oct 22 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[6153], NumberFieldDiscriminant@Sqrt[#] == # && NumberFieldClassNumber@Sqrt[#] == 6 &]

A218160 Fundamental discriminants of real quadratic number fields with class number 10.

Original entry on oeis.org

3129, 3585, 4097, 4321, 4444, 4865, 4904, 5777, 6085, 6945, 7049, 7221, 7705, 8124, 8321, 8569, 9321, 9340, 9448, 9553, 9669, 10408, 10885, 11281, 11509, 11921, 11937, 11944, 12984, 12993, 12997, 13516, 13741, 13865, 14392, 14396, 14529, 14745, 14888
Offset: 1

Views

Author

Arkadiusz Wesolowski, Oct 22 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[14888], NumberFieldDiscriminant@Sqrt[#] == # && NumberFieldClassNumber@Sqrt[#] == 10 &]

A094613 Fundamental discriminants of real quadratic number fields with class number 4.

Original entry on oeis.org

145, 328, 445, 505, 520, 680, 689, 777, 780, 793, 840, 876, 897, 901, 905, 924, 1020, 1045, 1096, 1105, 1145, 1160, 1164, 1221, 1288, 1292, 1313, 1320, 1365, 1480, 1560, 1640, 1677, 1736, 1740, 1745, 1752, 1820, 1848, 1885, 1932, 2005, 2040, 2056, 2120, 2145
Offset: 1

Views

Author

Eric W. Weisstein, May 14 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[2145], NumberFieldDiscriminant@Sqrt[#] == # && NumberFieldClassNumber@Sqrt[#] == 4 &] (* Arkadiusz Wesolowski, Oct 22 2012 *)
  • PARI
    {ok(n) = n>10 && isfundamental(n) && qfbclassno(n)==4};
    for(n=1, 2500, if(ok(n)==1, print1(n, ", "))) \\ G. C. Greubel, Mar 01 2019
    
  • Sage
    is_fund_and_qfbcn_1 = lambda n: is_fundamental_discriminant(n) and QuadraticField(n, 'a').class_number() == 4;
    A094613 = lambda n: filter(is_fund_and_qfbcn_1, (1, 2, .., n));
    A094613(2500) # G. C. Greubel, Mar 01 2019

A081363 Smallest squarefree integer k such that Q(sqrt(k)) has class number n.

Original entry on oeis.org

2, 10, 79, 82, 401, 235, 577, 226, 1129, 1111, 1297, 730, 4759, 1534, 9871, 2305, 7054, 4954, 15409, 3601, 7057, 4762, 23593, 9634, 24859, 13321, 8761, 5626, 49281, 11665, 97753, 15130, 55339, 19882, 25601, 18226, 24337, 19834, 41614, 16899, 55966, 47959
Offset: 1

Views

Author

Dean Hickerson, Mar 19 2003

Keywords

Comments

What is known about the asymptotics of this sequence? - Charles R Greathouse IV, Jan 26 2017
Records: 2, 10, 79, 82, 401, 577, 1129, 1297, 4759, 9871, 15409, 23593, 24859, 49281, 97753, 106537, 159199, 197137, 212137, 239119, 245023, 444089, 589822, 614849, 815413, 837929, 943951, 1025494, 1224121, 1240369, 1333255, 1334026, ..., . - Robert G. Wilson v, Apr 12 2017

Crossrefs

Programs

Extensions

More terms from Max Alekseyev, Apr 28 2010

A218157 Fundamental discriminants of real quadratic number fields with class number 7.

Original entry on oeis.org

577, 1009, 1601, 1761, 2029, 2913, 4229, 4348, 5176, 5273, 5417, 7736, 8097, 8661, 8773, 9004, 9029, 9049, 9101, 9208, 9289, 9868, 10117, 10313, 10357, 10713, 10957, 11021, 11053, 11269, 11537, 11621, 12497, 12977, 13049, 13313, 13701, 14201, 15277, 15809
Offset: 1

Views

Author

Arkadiusz Wesolowski, Oct 22 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[15809], NumberFieldDiscriminant@Sqrt[#] == # && NumberFieldClassNumber@Sqrt[#] == 7 &]

A218158 Fundamental discriminants of real quadratic number fields with class number 8.

Original entry on oeis.org

904, 1596, 1705, 1768, 1785, 2584, 2605, 2705, 3081, 3196, 3201, 3480, 3640, 3976, 4092, 4161, 4305, 4488, 4620, 4669, 4956, 5160, 5196, 5249, 5305, 5404, 5513, 5713, 5772, 5784, 5865, 6360, 6409, 6565, 6757, 6953, 6972, 7449, 7585, 7656, 7788, 7833, 7980, 8005
Offset: 1

Views

Author

Arkadiusz Wesolowski, Oct 22 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[8005], NumberFieldDiscriminant@Sqrt[#] == # && NumberFieldClassNumber@Sqrt[#] == 8 &]

A218159 Fundamental discriminants of real quadratic number fields with class number 9.

Original entry on oeis.org

1129, 3137, 4409, 5521, 6616, 6809, 7573, 7873, 10273, 10721, 11641, 12409, 12657, 13069, 14876, 15629, 16321, 17273, 17989, 18136, 18633, 19441, 21781, 22492, 22497, 23512, 24029, 24169, 24697, 24781, 25361, 26573, 27221, 27349, 28901, 29317, 31897
Offset: 1

Views

Author

Arkadiusz Wesolowski, Oct 22 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[31897], NumberFieldDiscriminant@Sqrt[#] == # && NumberFieldClassNumber@Sqrt[#] == 9 &]
Showing 1-10 of 10 results.