cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 27 results. Next

A327297 Terms in A003656 that are not prime powers (A246655).

Original entry on oeis.org

12, 21, 24, 28, 33, 44, 56, 57, 69, 76, 77, 88, 92, 93, 124, 129, 133, 141, 152, 161, 172, 177, 184, 188, 201, 209, 213, 217, 236, 237, 248, 249, 253, 268, 284, 301, 309, 329, 332, 341, 344, 376, 381, 393, 412, 413, 417, 428, 437, 453, 472, 489, 497, 501, 508, 517, 524, 536, 537, 553, 556, 573, 581, 589, 597
Offset: 1

Views

Author

Jianing Song, Sep 16 2019

Keywords

Comments

Conjecture: if D is a term of this sequence, then D = uv, where u, v are 4, 8 or primes congruent to 3 modulo 4. For example, a(1) = 12 = 3*4, a(2) = 21 = 3*7, a(3) = 24 = 3*8, a(4) = 28 = 4*7, a(5) = 33 = 3*11, ... [This conjecture is correct: see Theorem 1 and Theorem 2 of Ezra Brown link; see also A003656. - Jianing Song, Dec 28 2021]
Let k be the quadratic field with discriminant D, O_k be ring of integers of k, N(x) be the norm of x and (D/p) be the Kronecker symbol. If D is a term of this sequence and D = uv, where u, v are 4, 8 or primes congruent to 3 modulo 4, then:
(a) if (((-u)/p), ((-v)/p)) = (1, 1), (1, 0) or (0, 1), then N(x) = p has solutions in O_k, while N(y) = -p has no solutions in k. For example, for D = 21 and p = 37, we have ((-3)/37) = ((-7)/37) = 1, and N(x) = 37 has solution x = (13 + sqrt(21))/2, but N(y) = -37 has no solutions in Q(sqrt(21)).
(b) if (((-u)/p), ((-v)/p)) = (-1, -1), (-1, 0) or (0, -1), then N(x) = -p has solutions in O_k, while N(y) = p has no solutions in k. For example, for D = 12 and p = 11, we have ((-3)/11) = ((-4)/11) = -1, and N(x) = -11 has solution x = 1 + 2*sqrt(3), but N(y) = 11 has no solutions in Q(sqrt(3)).
(c) if (((-u)/p), ((-v)/p)) = (1, -1) or (-1, 1), then N(x) = +-p has no solutions in k.
The smallest number of the form above that is not in this sequence is 316 = 4*79.
Also, it is conjectured that the quadratic field with discriminant D has form class number 2, where D is a term of this sequence. This is equivalent to the conjecture above. [This can also be deduced from the first paragraph of Ezra Brown link: the norm of the fundamental unit of the field k is -1 if D = 8 or a prime congruent to 1 modulo 4, and 1 if D is in this sequence. Here k is the quadratic field with discriminant D. - Jianing Song, Dec 28 2021]

Crossrefs

Subsequence of A003656 and A003658.
Complement of A003655 with respect to A003656.

Programs

  • PARI
    isA327297(D) = if(D>1&&isfundamental(D), quadclassunit(D)[1]==1&&!isprimepower(D), 0)

A014539 Erroneous version of A003656.

Original entry on oeis.org

5, 13, 17, 21, 29, 37, 41, 53, 57, 61, 69, 73, 77
Offset: 0

Views

Author

Keywords

A071581 A003656(n)-prime(n).

Original entry on oeis.org

3, 5, 7, 6, 6, 8, 7, 9, 6, 4, 6, 4, 3, 10, 9, 4, 2, 8, 6, 5, 4, 9, 6, 3, -4, -4, -2, 2, 4, 11, 2, 2, 0, 2, 0, 1, 0, -2, 5, 0, -2, 0, -7, -5, -4, -2, -10, -14, -14, -12, 0, -3, -4, -10, -9, -14, -16, -3, -8, -4, -2, -9, -14, -10, -4, -4, -14, -8, -15, -12, -12, -15, -18, -20, -6, -7
Offset: 1

Views

Author

Benoit Cloitre, Jun 01 2002

Keywords

Comments

a(n)=0 for n = 33, 35, 37, 40, 42, 51 ...

Extensions

More terms from Max Alekseyev, Jun 27 2011

A014602 Discriminants of imaginary quadratic fields with class number 1 (negated).

Original entry on oeis.org

3, 4, 7, 8, 11, 19, 43, 67, 163
Offset: 1

Views

Author

Eric Rains (rains(AT)caltech.edu)

Keywords

Comments

Only fundamental discriminants are listed. The non-fundamental discriminants -12, -16, -27, and -28 also have class number 1 (and there are no others). - Andrew V. Sutherland, Apr 19 2009

References

  • H. Cohen, Course in Computational Alg. No. Theory, Springer, 1993, p. 229.
  • D. A. Cox, Primes of the form x^2+ny^2, Wiley, p. 271.
  • J. H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Springer, see p. 483.

Crossrefs

Cf. A003656 (real case), A003173, A013658, A014603, A046002...A046020.

Programs

  • Mathematica
    Union[ (-NumberFieldDiscriminant[ Sqrt[-#]] &) /@ Select[ Range[200], NumberFieldClassNumber[ Sqrt[-#]] == 1 &]] (* Jean-François Alcover, Jan 04 2012 *)
  • PARI
    is(n)=isfundamental(-n) && qfbclassno(-n)==1 \\ Charles R Greathouse IV, Nov 20 2012
    
  • Sage
    is_fund_and_qfbcn_1 = lambda n: is_fundamental_discriminant(n) and QuadraticField(n, 'a').class_number() == 1
    A014602 = lambda n: filter(is_fund_and_qfbcn_1, (-1,-2,..-n))
    [-n for n in A014602(270)] # Peter Luschny, Aug 10 2014

A094612 Fundamental discriminants of real quadratic number fields with class number 3.

Original entry on oeis.org

229, 257, 316, 321, 469, 473, 568, 733, 761, 892, 993, 1016, 1101, 1229, 1257, 1304, 1373, 1436, 1489, 1509, 1772, 1901, 1929, 1957, 2021, 2089, 2101, 2177, 2213, 2429, 2557, 2589, 2636, 2677, 2713, 2777, 2857, 2917, 2981, 3173, 3221, 3229, 3261, 3356, 3569
Offset: 1

Views

Author

Eric W. Weisstein, May 14 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[3569], NumberFieldDiscriminant@Sqrt[#] == # && NumberFieldClassNumber@Sqrt[#] == 3 &] (* Arkadiusz Wesolowski, Oct 22 2012 *)
  • PARI
    {ok(n) = n>10 && isfundamental(n) && qfbclassno(n)==3};
    for(n=1, 3600, if(ok(n)==1, print1(n, ", "))) \\ G. C. Greubel, Mar 01 2019
    
  • Sage
    is_fund_and_qfbcn_1 = lambda n: is_fundamental_discriminant(n) and QuadraticField(n, 'a').class_number() == 3;
    A094612 = lambda n: filter(is_fund_and_qfbcn_1, (1, 2, .., n));
    A094612(3700) # G. C. Greubel, Mar 01 2019

Extensions

Edited by N. J. A. Sloane, May 01 2010

A094619 Fundamental discriminants of real quadratic number fields with class number 2.

Original entry on oeis.org

40, 60, 65, 85, 104, 105, 120, 136, 140, 156, 165, 168, 185, 204, 205, 220, 221, 232, 264, 265, 273, 280, 285, 296, 305, 312, 345, 348, 357, 364, 365, 377, 380, 385, 408, 424, 429, 440, 444, 456, 460, 465, 476, 481, 485, 488, 492, 493, 533, 545, 552, 561, 565
Offset: 1

Views

Author

Eric W. Weisstein, May 14 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[565], NumberFieldDiscriminant@Sqrt[#] == # && NumberFieldClassNumber@Sqrt[#] == 2 &] (* Arkadiusz Wesolowski, Oct 22 2012 *)
  • PARI
    is(n)=n>9 && isfundamental(n) && qfbclassno(n)==2 \\ Charles R Greathouse IV, Nov 05 2014
    
  • Sage
    is_fund_and_qfbcn_1 = lambda n: is_fundamental_discriminant(n) and QuadraticField(n, 'a').class_number() == 2;
    A094619 = lambda n: filter(is_fund_and_qfbcn_1, (1, 2, .., n));
    A094619(600) # G. C. Greubel, Mar 01 2019

A094614 Fundamental discriminants of real quadratic number fields with class number 5.

Original entry on oeis.org

401, 817, 1093, 1393, 1429, 1641, 1756, 1897, 1996, 2081, 2153, 2908, 3121, 3181, 3253, 3928, 3997, 4353, 4357, 4441, 4504, 4757, 4889, 5241, 5269, 5308, 5944, 6113, 6157, 6481, 6949, 7064, 7229, 7513, 7817, 7861, 8049, 8108, 8121, 8309, 8501, 8689, 9181, 9229
Offset: 1

Views

Author

Eric W. Weisstein, May 14 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[9229], NumberFieldDiscriminant@Sqrt[#] == # && NumberFieldClassNumber@Sqrt[#] == 5 &] (* Arkadiusz Wesolowski, Oct 22 2012 *)
  • PARI
    {ok(n) = n>10 && isfundamental(n) && qfbclassno(n)==5};
    for(n=1, 10000, if(ok(n)==1, print1(n, ", "))) \\ G. C. Greubel, Mar 01 2019
    
  • Sage
    is_fund_and_qfbcn_1 = lambda n: is_fundamental_discriminant(n) and QuadraticField(n, 'a').class_number() == 5;
    A094614 = lambda n: filter(is_fund_and_qfbcn_1, (1, 2, .., n));
    A094614(10000) # G. C. Greubel, Mar 01 2019

A218156 Fundamental discriminants of real quadratic number fields with class number 6.

Original entry on oeis.org

697, 785, 940, 985, 1345, 1384, 1708, 1765, 1937, 2024, 2233, 2296, 2505, 2941, 2993, 3021, 3144, 3281, 3305, 3368, 3496, 3576, 3580, 3592, 3596, 3624, 3973, 4065, 4344, 4764, 4765, 4844, 5073, 5353, 5356, 5368, 5369, 5529, 5621, 5624, 5685, 5901, 6108, 6153
Offset: 1

Views

Author

Arkadiusz Wesolowski, Oct 22 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[6153], NumberFieldDiscriminant@Sqrt[#] == # && NumberFieldClassNumber@Sqrt[#] == 6 &]

A218160 Fundamental discriminants of real quadratic number fields with class number 10.

Original entry on oeis.org

3129, 3585, 4097, 4321, 4444, 4865, 4904, 5777, 6085, 6945, 7049, 7221, 7705, 8124, 8321, 8569, 9321, 9340, 9448, 9553, 9669, 10408, 10885, 11281, 11509, 11921, 11937, 11944, 12984, 12993, 12997, 13516, 13741, 13865, 14392, 14396, 14529, 14745, 14888
Offset: 1

Views

Author

Arkadiusz Wesolowski, Oct 22 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[14888], NumberFieldDiscriminant@Sqrt[#] == # && NumberFieldClassNumber@Sqrt[#] == 10 &]

A035120 Discriminants of real quadratic number fields with class number >= 2.

Original entry on oeis.org

40, 60, 65, 85, 104, 105, 120, 136, 140, 145, 156, 165, 168, 185, 204, 205, 220, 221, 229, 232, 257, 264, 265, 273, 280, 285, 296, 305, 312, 316, 321, 328, 345, 348, 357, 364, 365, 377, 380, 385, 401, 408, 424, 429, 440, 444, 445, 456, 460, 465, 469, 473
Offset: 1

Views

Author

Keywords

References

  • H. Cohen, Advanced Topics in Computational Number Theory, Springer, 2000, p. 534.
  • H. Hasse, Number Theory, Springer-Verlag, NY, 1980, p. 576.

Crossrefs

Programs

  • Mathematica
    Select[Range[500], NumberFieldDiscriminant[Sqrt[#]] == # && NumberFieldClassNumber[Sqrt[#]] >= 2 & ] (* Jean-François Alcover, Jul 04 2013 *)

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), May 15 2002
Showing 1-10 of 27 results. Next