cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094792 a(n) = (1/n!)*A001565(n).

Original entry on oeis.org

2, 11, 32, 71, 134, 227, 356, 527, 746, 1019, 1352, 1751, 2222, 2771, 3404, 4127, 4946, 5867, 6896, 8039, 9302, 10691, 12212, 13871, 15674, 17627, 19736, 22007, 24446, 27059, 29852, 32831, 36002, 39371, 42944, 46727, 50726, 54947, 59396, 64079
Offset: 0

Views

Author

Benoit Cloitre, Jun 11 2004

Keywords

Comments

Number of injections from {1,2,3} to {1,2,...,n} with no fixed points. - Fiona T. Brunk (fbrunk(AT)mcs.st-and.ac.uk), May 23 2006

Crossrefs

Programs

Formula

a(n) = n^3 + 3*n^2 + 5*n + 2.
a(n) = Sum_{i=0..3} (-1)^i*binomial(3,i)*(n-i)!/(n-3)!. - Fiona T. Brunk (fbrunk(AT)mcs.st-and.ac.uk), May 23 2006
G.f.: (x^3+3*x+2) / (x-1)^4. - Colin Barker, Jun 15 2013
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Fung Lam, Apr 17 2014
P-recursive: n*a(n) = (n+4)*a(n-1) - a(n-2) with a(0) = 2 and a(1) = 11. Cf. A094791. - Peter Bala, Jul 25 2021