cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A094809 Numbers of the form Fibonacci(p+1)/p, where p are primes >= 7 that end in 3 or 7 (i.e., p = A003631(n) for n > 2).

Original entry on oeis.org

3, 29, 152, 2016, 1056437, 16311831, 102287808, 1627690024, 1085424779823, 17876295136009, 1933742696582736, 1394864457161925217, 23571778916504612451, 155523623837575361328, 2642576343530770503704, 1982116737665744001184443, 225989772612884036918821112, 2983063546028389514347409745197
Offset: 1

Views

Author

Lekraj Beedassy, Jun 11 2004

Keywords

Crossrefs

Programs

  • Mathematica
    With[{prs=Select[Prime[Range[4,50]],MemberQ[{3,7},Mod[#,10]]&]},Table[Fibonacci[p+1]/p,{p,prs}]] (* Harvey P. Dale, Sep 26 2024 *)
  • PARI
    forprime(p=7,10^3,if((p+3)%5>1,next);print1(fibonacci(p+1)/p,",")) \\ Max Alekseyev, Jan 12 2007

Formula

a(n) = A096028(n+1). - Jinyuan Wang, Feb 24 2020

Extensions

More terms from Max Alekseyev, Jan 12 2007
More terms from Jinyuan Wang, Feb 24 2020

A096028 Numbers of the form (Fibonacci(p+1))/p, where p are primes ending in 3 or 7 (i.e., A003631).

Original entry on oeis.org

1, 3, 29, 152, 2016, 1056437, 16311831, 102287808, 1627690024, 1085424779823, 17876295136009, 1933742696582736, 1394864457161925217, 23571778916504612451, 155523623837575361328, 2642576343530770503704, 1982116737665744001184443, 225989772612884036918821112, 2983063546028389514347409745197
Offset: 1

Views

Author

Keywords

Comments

Essentially the same as A094809. - R. J. Mathar, Sep 04 2008

Crossrefs

Programs

  • Mathematica
    s = Select[ Prime[ Range[35]], Mod[ #, 10] == 3 || Mod[ #, 10] == 7 &]; Fibonacci[s + 1]/s
  • PARI
    forprime(p=3, 10^3, if((p+3)%5>1, next); print1(fibonacci(p+1)/p, ", ")); \\ Jinyuan Wang, Feb 24 2020

Extensions

More terms from Jinyuan Wang, Feb 24 2020
Showing 1-2 of 2 results.