cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A094808 Numbers of the form Fibonacci(p-1)/p, where p are primes ending in 1 or 9 (i.e., A045468).

Original entry on oeis.org

5, 136, 10959, 26840, 2495955, 10021808981, 25377192720, 2681584376185, 113220181313816, 12360536835574179, 3507176714646157575, 152669979363491409744, 5030798638073511770858765, 222738121208382108330061096, 25556388788416277561281235799, 66021302497942406531221230200
Offset: 1

Views

Author

Lekraj Beedassy, Jun 11 2004

Keywords

Crossrefs

Programs

  • Mathematica
    s = Select[ Prime[ Range[35]], Mod[ #, 10] == 1 || Mod[ #, 10] == 9 &]; Fibonacci[s - 1]/s (* Robert G. Wilson v, Jun 15 2004 *)
    Fibonacci[#-1]/#&/@Select[Prime[Range[40]],MemberQ[{1,9},Mod[#,10]]&] (* Harvey P. Dale, Jul 20 2025 *)
  • PARI
    forprime(p=11, 10^3, if((p+3)%5<2, next); print1(fibonacci(p-1)/p, ", ")); \\ Jinyuan Wang, Feb 24 2020

Extensions

More terms from Robert G. Wilson v, Jun 15 2004
More terms from Jinyuan Wang, Feb 24 2020

A094809 Numbers of the form Fibonacci(p+1)/p, where p are primes >= 7 that end in 3 or 7 (i.e., p = A003631(n) for n > 2).

Original entry on oeis.org

3, 29, 152, 2016, 1056437, 16311831, 102287808, 1627690024, 1085424779823, 17876295136009, 1933742696582736, 1394864457161925217, 23571778916504612451, 155523623837575361328, 2642576343530770503704, 1982116737665744001184443, 225989772612884036918821112, 2983063546028389514347409745197
Offset: 1

Views

Author

Lekraj Beedassy, Jun 11 2004

Keywords

Crossrefs

Programs

  • Mathematica
    With[{prs=Select[Prime[Range[4,50]],MemberQ[{3,7},Mod[#,10]]&]},Table[Fibonacci[p+1]/p,{p,prs}]] (* Harvey P. Dale, Sep 26 2024 *)
  • PARI
    forprime(p=7,10^3,if((p+3)%5>1,next);print1(fibonacci(p+1)/p,",")) \\ Max Alekseyev, Jan 12 2007

Formula

a(n) = A096028(n+1). - Jinyuan Wang, Feb 24 2020

Extensions

More terms from Max Alekseyev, Jan 12 2007
More terms from Jinyuan Wang, Feb 24 2020
Showing 1-2 of 2 results.