A094960 Positive integers k such that the derivative of the k-th Bernoulli polynomial B(k,x) contains only integer coefficients.
1, 2, 4, 6, 10, 12, 28, 30, 36, 60
Offset: 1
Examples
B(6,x) = x^6 - 3*x^5 + (5/2)*x^4 - (1/2)*x^2 + 1/42 so B'(6,x) contains only integer coefficients and 6 is in the sequence.
Links
- Olivier Bordellès, Florian Luca, Pieter Moree, and Igor E. Shparlinski, Denominators of Bernoulli polynomials, Mathematika 64 (2018), 519-541.
- Bernd C. Kellner, On a product of certain primes, J. Number Theory, 179 (2017), 126-141; arXiv:1705.04303 [math.NT], 2017.
- Bernd C. Kellner, On the finiteness of Bernoulli polynomials whose derivative has only integral coefficients, J. Integer Seq. 27 (2024), Article 24.2.8, 11 pp.;
- arXiv:2310.01325 [math.NT], 2023.
- Bernd C. Kellner and Jonathan Sondow, Power-Sum Denominators, Amer. Math. Monthly, 124 (2017), 695-709; arXiv:1705.03857 [math.NT], 2017.
- Bernd C. Kellner and Jonathan Sondow, The denominators of power sums of arithmetic progressions, Integers 18 (2018), #A95, 17 pp.; arXiv:1705.05331 [math.NT], 2017.
- Bernd C. Kellner and Jonathan Sondow, On Carmichael and polygonal numbers, Bernoulli polynomials, and sums of base-p digits, Integers 21 (2021), #A52, 21 pp.; arXiv:1902.10672 [math.NT], 2019.
Programs
-
Maple
p := n -> if denom(diff(bernoulli(n, x), x)) = 1 then n else fi: seq(p(n), n=1..100); # Emeric Deutsch
-
Mathematica
(* From Bernd C. Kellner, Oct 02 2023. (Start) *) (* k-th derivative of BP: *) k = 1; Select[Range[1000], Denominator[Together[D[BernoulliB[#, x],{x, k}]]] == 1&] (* Exact denominator formula: *) SD[n_, p_] := If[n < 1 || p < 2, 0, Plus@@IntegerDigits[n, p]]; DBP[n_, k_] := Module[{m = n-k+1, fac = FactorialPower[n, k]}, If[n < 1 || k < 1 || n <= k, Return[1]]; Times@@Select[Prime[Range[PrimePi[(m+1)/(2 + Mod[m+1, 2])]]], !Divisible[fac, #] && SD[m, #] >= #&]]; k = 1; Select[Range[1000], DBP[#, k] == 1&] (* End *)
-
PARI
is_A094960(k) = !#select(x->(denominator(x)!=1), Vec(deriv(bernpol(k)))); \\ Michel Marcus, Feb 15 2021
-
Python
from itertools import count, islice from sympy import Poly, diff, bernoulli from sympy.abc import x def A094960_gen(): # generator of terms return filter(lambda k:k<=1 or all(c.is_integer for c in Poly(diff(bernoulli(k,x),x)).coeffs()),count(1)) A094960_list = list(islice(A094960_gen(),10)) # Chai Wah Wu, Oct 03 2023
Formula
k is a term if A324370(k) = 1. - Bernd C. Kellner, Oct 02 2023
k is a term <=> 0 = Sum_{j=0..k-1} k*binomial(k - 1, j) mod Clausen(j), where Clausen(n) = A160014(n, 1). - Peter Luschny, Oct 04 2023
Comments